4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Proteomics. Tissue-based map of the human proteome.

          Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body. Copyright © 2015, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets

            Abstract Cellular life depends on a complex web of functional associations between biomolecules. Among these associations, protein–protein interactions are particularly important due to their versatility, specificity and adaptability. The STRING database aims to integrate all known and predicted associations between proteins, including both physical interactions as well as functional associations. To achieve this, STRING collects and scores evidence from a number of sources: (i) automated text mining of the scientific literature, (ii) databases of interaction experiments and annotated complexes/pathways, (iii) computational interaction predictions from co-expression and from conserved genomic context and (iv) systematic transfers of interaction evidence from one organism to another. STRING aims for wide coverage; the upcoming version 11.5 of the resource will contain more than 14 000 organisms. In this update paper, we describe changes to the text-mining system, a new scoring-mode for physical interactions, as well as extensive user interface features for customizing, extending and sharing protein networks. In addition, we describe how to query STRING with genome-wide, experimental data, including the automated detection of enriched functionalities and potential biases in the user's query data. The STRING resource is available online, at https://string-db.org/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The GTEx Consortium atlas of genetic regulatory effects across human tissues

              (2020)
              The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects on the transcriptome across human tissues and to link these regulatory mechanisms to trait and disease associations. Here, we present analyses of the version 8 data, examining 15,201 RNA-sequencing samples from 49 tissues of 838 postmortem donors. We comprehensively characterize genetic associations for gene expression and splicing in cis and trans, showing that regulatory associations are found for almost all genes, and describe the underlying molecular mechanisms and their contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large diversity of tissues, we provide insights into the tissue specificity of genetic effects and show that cell type composition is a key factor in understanding gene regulatory mechanisms in human tissues.
                Bookmark

                Author and article information

                Journal
                Expert Review of Proteomics
                Expert Review of Proteomics
                Informa UK Limited
                1478-9450
                1744-8387
                December 02 2021
                December 27 2021
                December 02 2021
                : 18
                : 12
                : 1073-1086
                Affiliations
                [1 ]Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
                [2 ]Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
                [3 ]Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Bonn, Germany
                [4 ]Institute of Physiology, University of Bonn, Bonn, Germany
                Article
                10.1080/14789450.2021.2017776
                34890519
                8b5ee16f-169f-4082-b5ad-6ff1c9d4804e
                © 2021
                History

                Comments

                Comment on this article