28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The complete mitochondrial genome of the grooved carpet shell, Ruditapes decussatus (Bivalvia, Veneridae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the large number of animal complete mitochondrial genomes currently available in public databases, knowledge about mitochondrial genomics in invertebrates is uneven. This paper reports, for the first time, the complete mitochondrial genome of the grooved carpet shell, Ruditapes decussatus, also known as the European clam. Ruditapes decussatus is morphologically and ecologically similar to the Manila clam Ruditapes philippinarum, which has been recently introduced for aquaculture in the very same habitats of Ruditapes decussatus, and that is replacing the native species. Currently the production of the European clam is almost insignificant, nonetheless it is considered a high value product, and therefore it is an economically important species, especially in Portugal, Spain and Italy. In this work we: (i) assembled Ruditapes decussatus mitochondrial genome from RNA-Seq data, and validated it by Sanger sequencing; (ii) analyzed and characterized the Ruditapes decussatus mitochondrial genome, comparing its features with those of other venerid bivalves; (iii) assessed mitochondrial sequence polymorphism (SP) and copy number variation (CNV) of tandem repeats across 26 samples. Despite using high-throughput approaches we did not find evidence for the presence of two sex-linked mitochondrial genomes, typical of the doubly uniparental inheritance of mitochondria, a phenomenon known in ∼100 bivalve species. According to our analyses, Ruditapes decussatus is more genetically similar to species of the Genus Paphia than to the congeneric Ruditapes philippinarum, a finding that bolsters the already-proposed need of a taxonomic revision. We also found a quite low genetic variability across the examined samples, with few SPs and little variability of the sequences flanking the control region (Largest Unassigned Regions (LURs). Strikingly, although we found low nucleotide variability along the entire mitochondrial genome, we observed high levels of length polymorphism in the LUR due to CNV of tandem repeats, and even a LUR length heteroplasmy in two samples. It is not clear if the lack of genetic variability in the mitochondrial genome of Ruditapes decussatus is a cause or an effect of the ongoing replacement of Ruditapes decussatus with the invasive Ruditapes philippinarum, and more analyses, especially on nuclear sequences, are required to assess this point.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          An Integrated Pipeline for de Novo Assembly of Microbial Genomes

          Remarkable advances in DNA sequencing technology have created a need for de novo genome assembly methods tailored to work with the new sequencing data types. Many such methods have been published in recent years, but assembling raw sequence data to obtain a draft genome has remained a complex, multi-step process, involving several stages of sequence data cleaning, error correction, assembly, and quality control. Successful application of these steps usually requires intimate knowledge of a diverse set of algorithms and software. We present an assembly pipeline called A5 (Andrew And Aaron's Awesome Assembly pipeline) that simplifies the entire genome assembly process by automating these stages, by integrating several previously published algorithms with new algorithms for quality control and automated assembly parameter selection. We demonstrate that A5 can produce assemblies of quality comparable to a leading assembly algorithm, SOAPdenovo, without any prior knowledge of the particular genome being assembled and without the extensive parameter tuning required by the other assembly algorithm. In particular, the assemblies produced by A5 exhibit 50% or more reduction in broken protein coding sequences relative to SOAPdenovo assemblies. The A5 pipeline can also assemble Illumina sequence data from libraries constructed by the Nextera (transposon-catalyzed) protocol, which have markedly different characteristics to mechanically sheared libraries. Finally, A5 has modest compute requirements, and can assemble a typical bacterial genome on current desktop or laptop computer hardware in under two hours, depending on depth of coverage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads

            An important step in ‘metagenomics’ analysis is the assembly of multiple genomes from mixed sequence reads of multiple species in a microbial community. Most conventional pipelines use a single-genome assembler with carefully optimized parameters. A limitation of a single-genome assembler for de novo metagenome assembly is that sequences of highly abundant species are likely misidentified as repeats in a single genome, resulting in a number of small fragmented scaffolds. We extended a single-genome assembler for short reads, known as ‘Velvet’, to metagenome assembly, which we called ‘MetaVelvet’, for mixed short reads of multiple species. Our fundamental concept was to first decompose a de Bruijn graph constructed from mixed short reads into individual sub-graphs, and second, to build scaffolds based on each decomposed de Bruijn sub-graph as an isolate species genome. We made use of two features, the coverage (abundance) difference and graph connectivity, for the decomposition of the de Bruijn graph. For simulated datasets, MetaVelvet succeeded in generating significantly higher N50 scores than any single-genome assemblers. MetaVelvet also reconstructed relatively low-coverage genome sequences as scaffolds. On real datasets of human gut microbial read data, MetaVelvet produced longer scaffolds and increased the number of predicted genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species.

              The mitochondrial genome (mtDNA) of Metazoa is a good model system for evolutionary genomic studies and the availability of more than 1000 sequences provides an almost unique opportunity to decode the mechanisms of genome evolution over a large phylogenetic range. In this paper, we review several structural features of the metazoan mtDNA, such as gene content, genome size, genome architecture and the new parameter of gene strand asymmetry in a phylogenetic framework. The data reviewed here show that: (1) the plasticity of Metazoa mtDNA is higher than previously thought and mainly due to variation in number and location of tRNA genes; (2) an exceptional trend towards stabilization of genomic features occurred in deuterostomes and was exacerbated in vertebrates, where gene content, genome architecture and gene strand asymmetry are almost invariant. Only tunicates exhibit a very high degree of genome variability comparable to that found outside deuterostomes. In order to analyse the genomic evolutionary process at short evolutionary distances, we have also compared mtDNAs of species belonging to the same genus: the variability observed in congeneric species significantly recapitulates the evolutionary dynamics observed at higher taxonomic ranks, especially for taxa showing high levels of genome plasticity and/or fast nucleotide substitution rates. Thus, the analysis of congeneric species promises to be a valuable approach for the assessment of the mtDNA evolutionary trend in poorly or not yet sampled metazoan groups.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                22 August 2017
                2017
                : 5
                : e3692
                Affiliations
                [1 ] Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy , Bologna, Italy
                [2 ] Department of Biological Sciences, Program in Molecular and Computational Biology, University of Southern California , Los Angeles, CA, USA
                Author information
                http://orcid.org/0000-0002-1680-8616
                http://orcid.org/0000-0002-6222-8225
                Article
                3692
                10.7717/peerj.3692
                5571815
                8b7147cb-cb0e-4228-b943-184819c7500d
                © 2017 Ghiselli et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 19 May 2017
                : 25 July 2017
                Funding
                Funded by: Italian Ministry of Education, University and Research (MIUR) FIR
                Award ID: RBFR13T97A
                Funded by: MIUR SIR
                Award ID: RBSI14G0P5
                Funded by: Zumberge Foundation
                Funded by: Canziani bequest
                This study was supported by the Italian Ministry of Education, University and Research (MIUR) FIR Programme no. RBFR13T97A funded to FG, MIUR SIR Programme no. RBSI14G0P5 funded to LM, Zumberge Foundation to SVN, and by the Canziani bequest funded to MP. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Zoology

                complete mitochondrial genome,mitochondrial length polymorphism,mitochondrial repeats,codon usage,bivalve molluscs,european clam,comparative mitochondrial genomics,mtdna de novo assembly,rna-seq,doubly uniparental inheritance

                Comments

                Comment on this article