24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The pulse light mode enhances the effect of photobiomodulation on B16F10 melanoma cells through autophagy pathway

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photobiomodulation (PBM) is the use of low irradiance light of specific wavelengths to generate physiological changes and therapeutic effects. However, there are few studies on the effects of PBM of different LED light modes on cells. Here, we investigated the difference of influence between continuous wave (CW) and pulse-PBM on B16F10 melanoma cells. Our results suggested that the pulse mode had a more significant PBM than the CW mode on B16F10 melanoma cells. Our study confirmed that ROS and Ca2+ levels in B16F10 melanoma cells treated with pulse-PBM were significantly higher than those in the control and CW-PBM groups. One mechanism that causes the difference in CW and pulse-PBM action is that pulse-PBM activates autophagy of melanoma cells through the ROS/OPN3/Ca2+ signaling pathway, and excessive autophagy activation inhibits proliferation and apoptosis of melanoma cells. Autophagy may be one of the reasons for the difference between pulse- and CW-PBM on melanoma cells. More importantly, melanoma cells responded to brief PBM pulses by increasing intracellular Ca2+ levels.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The role of Atg proteins in autophagosome formation.

          Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of cytoplasm for delivery to the lysosome. Autophagosome formation is dynamically regulated by starvation and other stresses and involves complicated membrane reorganization. Since the discovery of yeast Atg-related proteins, autophagosome formation has been dissected at the molecular level. In this review we describe the molecular mechanism of autophagosome formation with particular focus on the function of Atg proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy: cellular and molecular mechanisms.

              Autophagy is a self-degradative process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Autophagy also plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria, endoplasmic reticulum and peroxisomes, as well as eliminating intracellular pathogens. Thus, autophagy is generally thought of as a survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy can be either non-selective or selective in the removal of specific organelles, ribosomes and protein aggregates, although the mechanisms regulating aspects of selective autophagy are not fully worked out. In addition to elimination of intracellular aggregates and damaged organelles, autophagy promotes cellular senescence and cell surface antigen presentation, protects against genome instability and prevents necrosis, giving it a key role in preventing diseases such as cancer, neurodegeneration, cardiomyopathy, diabetes, liver disease, autoimmune diseases and infections. This review summarizes the most up-to-date findings on how autophagy is executed and regulated at the molecular level and how its disruption can lead to disease. Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lasers in Medical Science
                Lasers Med Sci
                Springer Science and Business Media LLC
                1435-604X
                December 2023
                February 15 2023
                : 38
                : 1
                Article
                10.1007/s10103-023-03733-1
                36790539
                8b7858a4-ee4d-49fc-9f16-118ded6dc428
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article