0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Studying Binary Formation under Dynamical Friction Using Hill's Problem

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using the equations of motion from Hill's problem, with added accelerations for different forms of dynamical friction, we provide the (to-date) broadest scale-free study of friction-driven binary formation in gaseous disks and stellar clusters. We focus mainly on binary formation between stellar-mass black holes in active galactic nuclei (AGNi), considering both gas dynamical friction from AGN disks and stellar dynamical friction from the nuclear star cluster. We first find simple, dimensionless friction coefficients that approximate the effects of standard models for gas and stellar dynamical friction. We perform extensive simulations of Hill's problem under such friction, and we present a picture of binary formation through encounters between single stars on nearby orbits, as a function of friction parameter, eccentricity, and inclination. Notably, we find that the local binary formation rate is a linear function of the friction coefficient so long as the friction is weak. Due to the dimensionless nature of our model problem, our findings are generalizable to binary formation at all scales (e.g., intermediate-mass black holes in a star cluster, planetesimals in a gaseous disk).

          Related collections

          Author and article information

          Journal
          11 April 2024
          Article
          2404.08138
          8b82f91a-05fa-47e6-8e14-814ce98a1252

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          34 pages, 16 figures. Submitted to ApJ. Comments welcome
          astro-ph.GA astro-ph.HE

          Galaxy astrophysics,High energy astrophysical phenomena
          Galaxy astrophysics, High energy astrophysical phenomena

          Comments

          Comment on this article