2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of evening light exposure on polysomnographically assessed night-time sleep: A systematic review with meta-analysis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evening exposure to electric light can acutely suppress melatonin levels and adversely affect subsequent sleep. We conducted a systematic review with meta-analysis investigating the influence of evening illuminance levels on polysomnographically (PSG)-assessed sleep. We also explored how melanopsin (expressed in melanopic equivalent daylight illuminance (EDI) affects human sleep features. We included polysomnographic laboratory sleep studies with healthy humans for effects of illuminance and exposure duration, for pre-sleep exposures between 6:00 p.m. to 1:00 a.m. From 440 identified articles, 114 met eligibility criteria for screening, and 21 also reported type of light source/spectral characteristics, with 12 identified as eligible for review. Meta-analysis showed evening light affects sleep latency, sleep efficiency and slow wave sleep, with overall effect sizes (95% confidence interval) of 0.69 (−0.50; 1.88), 0.34 (−0.13; 0.82) and −0.61 (−1.85; 0.62), respectively. Estimated melanopic EDI in the range of 100–1000 lx yielded clear dose–response relationships for sleep latency and sleep efficiency, but not for slow wave sleep. Whilst illuminance and duration indicated no apparent effects for a single evening light exposure on PSG-assessed sleep latency, sleep efficiency and slow wave sleep, we observed evidence for a relationship between light exposure and sleep effects based on melanopic EDI. Hence, melanopic EDI may provide a robust predictor of non-visual responses on human sleep.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          Measuring inconsistency in meta-analyses.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement

            Systematic reviews should build on a protocol that describes the rationale, hypothesis, and planned methods of the review; few reviews report whether a protocol exists. Detailed, well-described protocols can facilitate the understanding and appraisal of the review methods, as well as the detection of modifications to methods and selective reporting in completed reviews. We describe the development of a reporting guideline, the Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols 2015 (PRISMA-P 2015). PRISMA-P consists of a 17-item checklist intended to facilitate the preparation and reporting of a robust protocol for the systematic review. Funders and those commissioning reviews might consider mandating the use of the checklist to facilitate the submission of relevant protocol information in funding applications. Similarly, peer reviewers and editors can use the guidance to gauge the completeness and transparency of a systematic review protocol submitted for publication in a journal or other medium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity.

              The primary circadian pacemaker, in the suprachiasmatic nucleus (SCN) of the mammalian brain, is photoentrained by light signals from the eyes through the retinohypothalamic tract. Retinal rod and cone cells are not required for photoentrainment. Recent evidence suggests that the entraining photoreceptors are retinal ganglion cells (RGCs) that project to the SCN. The visual pigment for this photoreceptor may be melanopsin, an opsin-like protein whose coding messenger RNA is found in a subset of mammalian RGCs. By cloning rat melanopsin and generating specific antibodies, we show that melanopsin is present in cell bodies, dendrites, and proximal axonal segments of a subset of rat RGCs. In mice heterozygous for tau-lacZ targeted to the melanopsin gene locus, beta-galactosidase-positive RGC axons projected to the SCN and other brain nuclei involved in circadian photoentrainment or the pupillary light reflex. Rat RGCs that exhibited intrinsic photosensitivity invariably expressed melanopsin. Hence, melanopsin is most likely the visual pigment of phototransducing RGCs that set the circadian clock and initiate other non-image-forming visual functions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lighting Research & Technology
                Lighting Research & Technology
                SAGE Publications
                1477-1535
                1477-0938
                October 2022
                August 05 2022
                October 2022
                : 54
                : 6
                : 609-624
                Affiliations
                [1 ]Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
                [2 ]Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
                [3 ]LEDVANCE GmbH, Garching (Munich), Germany
                [4 ]Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
                Article
                10.1177/14771535221078765
                8b9c071f-642d-4bef-ad5e-400ff34dbca7
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article