7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species.

      Journal of Agricultural and Food Chemistry
      Agave, chemistry, Angiosperms, Carbohydrate Conformation, Carbohydrates, Chromatography, Thin Layer, Environment, Fructans, Glycosylation, Plant Stems, Solubility, Water

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fructans, storage carbohydrates with beta-fructofuranosyl linkages, are found in approximately 15% of higher plants. The metabolic flexibility of those molecules allows them easily to polymerize and depolymerize to soluble carbohydrates according to plant development stage and environmental conditions. In this work, water-soluble carbohydrates, including fructan structure patterns, were compared among Agave and Dasylirion species grown in different environmental regions in Mexico. Fructans were the main storage carbohydrate present in Agave stems, in addition to other carbohydrates related to its metabolism, whereas Dasylirion spp. presented a different carbohydrate distribution. A good correlation of water-soluble carbohydrate content with climatic conditions was observed. Fructans in Agave and Dasylirion genera were found in the form of polydisperse molecules, where structural heterogeneity in the same plant was evidenced by methylation linkage analysis and chromatographic methods. Fructans from the studied species were classified into three groups depending on DP and linkage-type abundance. These storage carbohydrates share structural characteristics with fructans in plants that belong to the Asparagales members. Agave and Dasylirion fructans can be categorized as graminans and branched neo-fructans, which we have termed agavins.

          Related collections

          Author and article information

          Comments

          Comment on this article