14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Electrical responses of the marine ciliate Euplotes vannus (hypotrichia) to mechanical stimulation at the posterior cell end.

      The Journal of Membrane Biology
      Animals, Calcium, pharmacology, Cell Membrane, chemistry, physiology, ultrastructure, Cells, Cultured, Dose-Response Relationship, Drug, Egtazic Acid, Euplotes, Mechanoreceptors, Membrane Potentials, Quaternary Ammonium Compounds, Sodium, Stress, Mechanical

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electrical responses upon mechanostimulation at the posterior cell end were investigated in the marine hypotrichous ciliate Euplotes vannus. A new mechanostimulator was developed to mimic stimuli that are identical with those involved in cell-cell collisions. The receptor potential hyperpolarized by 18-35 mV within 12-25 msec, reached a peak value of -62 mV with a delay of 4-9 msec after membrane deformation, and was deactivated after 50-70 msec. Cirri were stimulated to beat accelerated backward. The corresponding receptor current exerted a similar time course with a peak of 2.4 nA. The shift of the reversal potential by 57.6 mV at a tenfold increase of [K+]o identifies potassium ions as current carriers within the development of the receptor potential. An intracellular K concentration of 355 mmol/liter was calculated for cells in a medium that was composed similar to sea-water. The mechanically activated potassium current was totally inhibited by extracellular TEA and intracellular Cs+, and partially inhibited by extracellular 4-AP. The total inhibition of the current by injected EGTA points to a Ca dependence of the posterior mechanosensitivity. It was confirmed by the increase of the peak current amplitude with rising [Ca2+]o. Sodium presumably repolarizes the receptor potential because the repolarization was delayed and after-depolarizations were eliminated in media without sodium. Since deciliation did not affect mechanosensitivity, the corresponding ion channels reside within the soma membrane.

          Related collections

          Author and article information

          Comments

          Comment on this article