Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vimentin Phosphorylation Underlies Myofibroblast Sensitivity to Withaferin A In Vitro and during Corneal Fibrosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vimentin is a newly recognized target for corneal fibrosis. Using primary rabbit corneal fibroblasts and myofibroblasts we show that myofibroblasts, unlike fibroblasts, display impaired cell spreading and cell polarization, which is associated with increased levels of soluble serine-38 phosphorylated vimentin (pSer38Vim). This pSer38Vim isoform is inefficiently incorporated into growing vimentin intermediate filaments (IFs) of myofibroblasts during cell spreading, and as a result, myofibroblasts maintain higher soluble pSer38Vim levels compared to fibroblasts. Moreover, the soluble vimentin-targeting small molecule and fibrotic inhibitor withaferin A (WFA) causes a potent blockade of cell spreading selectively in myofibroblasts by targeting soluble pSer38Vim for hyperphosphorylation. WFA treatment does not induce vimentin hyperphosphorylation in fibroblasts. This hyperphosphorylated pSer38Vim species in WFA-treated myofibroblasts becomes complexed with adaptor protein filamin A (FlnA), and these complexes appear as short squiggles when displaced from focal adhesions. The extracellular-signal regulated kinase (ERK) is also phosphorylated (pERK) in response to WFA, but surprisingly, pERK does not enter the nucleus but remains bound to pSer38Vim in cytoplasmic complexes. Using a model of corneal alkali injury, we show that fibrotic corneas of wild type mice possess high levels of pERK, whereas injured corneas of vimentin-deficient (Vim KO) mice that heal with reduced fibrosis have highly reduced pERK expression. Finally, WFA treatment causes a decrease in pERK and pSer38Vim expression in healing corneas of wild type mice. Taken together, these findings identify a hereto-unappreciated role for pSer38Vim as an important determinant of myofibroblast sensitivity to WFA.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Aggresomes: A Cellular Response to Misfolded Proteins

          Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing.

            Cell elongation and polarization are basic morphogenetic responses to extracellular matrix adhesion. We demonstrate here that human cultured fibroblasts readily polarize when plated on rigid, but not on compliant, substrates. On rigid surfaces, large and uniformly oriented focal adhesions are formed, whereas cells plated on compliant substrates form numerous small and radially oriented adhesions. Live-cell monitoring showed that focal adhesion alignment precedes the overall elongation of the cell, indicating that focal adhesion orientation may direct cell polarization. siRNA-mediated knockdown of 85 human protein tyrosine kinases (PTKs) induced distinct alterations in the cell polarization response, as well as diverse changes in cell traction force generation and focal adhesion formation. Remarkably, changes in rigidity-dependent traction force development, or focal adhesion mechanosensing, were consistently accompanied by abnormalities in the cell polarization response. We propose that the different stages of cell polarization are regulated by multiple, PTK-dependent molecular checkpoints that jointly control cell contractility and focal-adhesion-mediated mechanosensing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Post-translational modifications of intermediate filament proteins: mechanisms and functions.

              Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on-off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                17 July 2015
                2015
                : 10
                : 7
                : e0133399
                Affiliations
                [1 ]From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
                [2 ]Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Japan
                Cedars-Sinai Medical Center; UCLA School of Medicine, UNITED STATES
                Author notes

                Competing Interests: PBM and RM are inventors on Patents. US Patent # 8,283,323 (Title: WITHANOLIDE COMPOUNDS AS INHIBITORS OF FIBROSIS AND IDENTIFICATION OF MOLECULAR TARGETS FOR ANTI-FIBROTIC DRUG DEVELOPMENT) and US Patent # 8,735,178 (Title: WITHANOLIDES, PROBES AND BINDING TARGETS AND METHODS OF USE THEREOF). This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: PBM LL RM. Performed the experiments: PBM LL AT CS RM. Analyzed the data: PBM LL AT CS KK MI RM. Contributed reagents/materials/analysis tools: PBM KK MI RM. Wrote the paper: PBM RM.

                Article
                PONE-D-14-54831
                10.1371/journal.pone.0133399
                4506086
                26186445
                8c13dc48-b277-4dd8-8ec4-f3e5214cef13
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 7 December 2014
                : 26 June 2015
                Page count
                Figures: 10, Tables: 0, Pages: 26
                Funding
                This work was supported by the National Eye Institute, National Institutes of Health grant EY016782 ( https://www.nei.nih.gov/), and the University of Connecticut Foundation ( www.foundation.uconn.edu/), John A. and Linda Florence Solomon Endowed Chair funds. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article