551
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Valley-selective circular dichroism of monolayer molybdenum disulphide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A two-dimensional honeycomb lattice harbours a pair of inequivalent valleys in the k-space electronic structure, in the vicinities of the vertices of a hexagonal Brillouin zone, K ±. It is particularly appealing to exploit this emergent degree of freedom of charge carriers, in what is termed 'valleytronics'. The physics of valleys mimics that of spin, and will make possible devices, analogous to spintronics, such as valley filter and valve, and optoelectronic Hall devices, all very promising for next-generation electronics. The key challenge lies with achieving valley polarization, of which a convincing demonstration in a two-dimensional honeycomb structure remains evasive. Here we show, using first principles calculations, that monolayer molybdenum disulphide is an ideal material for valleytronics, for which valley polarization is achievable via valley-selective circular dichroism arising from its unique symmetry. We also provide experimental evidence by measuring the circularly polarized photoluminescence on monolayer molybdenum disulphide, which shows up to 50% polarization.

          Abstract

          The monolayer transition-metal dichalcogenide molybdenum disulphide has recently attracted attention owing to its distinctive electronic properties. Cao and co-workers present numerical evidence suggesting that circularly polarized light can preferentially excite a single valley in the band structure of this system.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging photoluminescence in monolayer MoS2.

          Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS(2), a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS(2) crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quantum confinement in layered d-electron materials like MoS(2) provides new opportunities for engineering the electronic structure of matter at the nanoscale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Atomically thin MoS2: A new direct-gap semiconductor

            The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N = 1, 2, ... 6 S-Mo-S monolayers have been investigated by optical spectroscopy. Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure. With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 0.6 eV. This leads to a crossover to a direct-gap material in the limit of the single monolayer. Unlike the bulk material, the MoS2 monolayer emits light strongly. The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 1000 compared with the bulk material.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides

              We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                06 June 2012
                : 3
                : 887
                Affiliations
                [1 ]International Center for Quantum Materials, Peking University , Beijing 100871, China.
                [2 ]Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China.
                [3 ]State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China.
                [4 ]Department of Physics, University of Texas at Austin , Austin, Texas 178712, USA.
                Author notes
                Article
                ncomms1882
                10.1038/ncomms1882
                3621397
                22673914
                8c8cc9dc-e0f5-4ac4-b326-f4c2871b1909
                Copyright © 2012, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 10 January 2012
                : 02 May 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article