Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Astrocyte elevated gene-1 (AEG-1) functions as an oncogene and regulates angiogenesis.

      Proceedings of the National Academy of Sciences of the United States of America
      Animals, Cell Adhesion Molecules, genetics, physiology, Cell Transformation, Neoplastic, Cells, Cultured, Fibroblasts, Humans, Mice, Mice, Nude, Neoplasm Invasiveness, Neoplasms, Experimental, Neovascularization, Pathologic, etiology, pathology, Oncogenes, Rats, Transplantation, Heterologous

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Astrocyte-elevated gene-1 (AEG-1) expression is increased in multiple cancers and plays a central role in Ha-ras-mediated oncogenesis through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Additionally, overexpression of AEG-1 protects primary and transformed human and rat cells from serum starvation-induced apoptosis through activation of PI3K/Akt signaling. These findings suggest, but do not prove, that AEG-1 may function as an oncogene. We now provide definitive evidence that AEG-1 is indeed a transforming oncogene and show that stable expression of AEG-1 in normal immortal cloned rat embryo fibroblast (CREF) cells induces morphological transformation and enhances invasion and anchorage-independent growth in soft agar, two fundamental biological events associated with cellular transformation. Additionally, AEG-1-expressing CREF clones form aggressive tumors in nude mice. Immunohistochemistry analysis of tumor sections demonstrates that AEG-1-expressing tumors have increased microvessel density throughout the entire tumor sections. Overexpression of AEG-1 increases expression of molecular markers of angiogenesis, including angiopoietin-1, matrix metalloprotease-2, and hypoxia-inducible factor 1-alpha. In vitro angiogenesis studies further demonstrate that AEG-1 promotes tube formation in Matrigel and increases invasion of human umbilical vein endothelial cells via the PI3K/Akt signaling pathway. Tube formation induced by AEG-1 correlates with increased expression of angiogenesis markers, including Tie2 and hypoxia-inducible factor-alpha, and blocking AEG-1-induced Tie2 with Tie2 siRNA significantly inhibits AEG-1-induced tube formation in Matrigel. Overall, our findings demonstrate that aberrant AEG-1 expression plays a dominant positive role in regulating oncogenic transformation and angiogenesis. These findings suggest that AEG-1 may provide a viable target for directly suppressing the cancer phenotype.

          Related collections

          Author and article information

          Comments

          Comment on this article