5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-circadian aspects of BHLHE40 cellular function in cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While many genes specifically act as oncogenes or tumor suppressors, others are tumor promoters or suppressors in a context-dependent manner. Here we will review the basic-helix-loop-helix (BHLH) protein BHLHE40, (also known as BHLHB2, STRA13, DEC1, or SHARP2) which is overexpressed in gastric, breast, and brain tumors; and downregulated in colorectal, esophageal, pancreatic and lung cancer. As a transcription factor, BHLHE40 is expressed in the nucleus, where it binds to target gene promoters containing the E-box hexanucleotide sequence, but can also be expressed in the cytoplasm, where it stabilizes cyclin E, preventing cyclin E-mediated DNA replication and cell cycle progression. In different organs BHLHE40 regulates different targets; hence may have different impacts on tumorigenesis. BHLHE40 promotes PI3K/Akt/mTOR activation in breast cancer, activating tumor progression, but suppresses STAT1 expression in clear cell carcinoma, triggering tumor suppression. Target specificity likely depends on cooperation with other transcription factors. BHLHE40 is activated in lung and esophageal carcinoma by the tumor suppressor p53 inducing senescence and suppressing tumor growth, but is also activated under hypoxic conditions by HIF-1α in gastric cancer and hepatocellular carcinomas, stimulating tumor progression. Thus, BHLHE40 is a multi-functional protein that mediates the promotion or suppression of cancer in a context dependent manner.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator.

          Mammalian circadian rhythms are generated by a feedback loop in which BMAL1 and CLOCK, players of the positive limb, activate transcription of the cryptochrome and period genes, components of the negative limb. Bmal1 and Per transcription cycles display nearly opposite phases and are thus governed by different mechanisms. Here, we identify the orphan nuclear receptor REV-ERBalpha as the major regulator of cyclic Bmal1 transcription. Circadian Rev-erbalpha expression is controlled by components of the general feedback loop. Thus, REV-ERBalpha constitutes a molecular link through which components of the negative limb drive antiphasic expression of components of the positive limb. While REV-ERBalpha influences the period length and affects the phase-shifting properties of the clock, it is not required for circadian rhythm generation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular components of the mammalian circadian clock.

            Circadian rhythms are approximately 24-h oscillations in behavior and physiology, which are internally generated and function to anticipate the environmental changes associated with the solar day. A conserved transcriptional-translational autoregulatory loop generates molecular oscillations of 'clock genes' at the cellular level. In mammals, the circadian system is organized in a hierarchical manner, in which a master pacemaker in the suprachiasmatic nucleus (SCN) regulates downstream oscillators in peripheral tissues. Recent findings have revealed that the clock is cell-autonomous and self-sustained not only in a central pacemaker, the SCN, but also in peripheral tissues and in dissociated cultured cells. It is becoming evident that specific contribution of each clock component and interactions among the components vary in a tissue-specific manner. Here, we review the general mechanisms of the circadian clockwork, describe recent findings that elucidate tissue-specific expression patterns of the clock genes and address the importance of circadian regulation in peripheral tissues for an organism's overall well-being.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIF-1: mediator of physiological and pathophysiological responses to hypoxia.

              All organisms can sense O(2) concentration and respond to hypoxia with adaptive changes in gene expression. The large body size of mammals necessitates the development of multiple complex physiological systems to ensure adequate O(2) delivery to all cells under normal conditions. The transcriptional regulator hypoxia-inducible factor 1 (HIF-1) is an essential mediator of O(2) homeostasis. HIF-1 is required for the establishment of key physiological systems during development and their subsequent utilization in fetal and postnatal life. HIF-1 also appears to play a key role in the pathophysiology of cancer, cardiovascular disease, and chronic lung disease, which represent the major causes of mortality among industrialized societies. Genetic or pharmacological modulation of HIF-1 activity in vivo may represent a novel therapeutic approach to these disorders.
                Bookmark

                Author and article information

                Journal
                Genes Cancer
                Genes Cancer
                Genes Cancer
                ImpactJ
                Genes & Cancer
                Impact Journals LLC
                1947-6019
                1947-6027
                2020
                2020
                : 11
                : 1-2
                : 1-19
                Affiliations
                1 VA Northern California Health Care System, Sacramento, CA, USA
                1 Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
                1 Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
                1 Department of Microbiology and Immunology, University of California, Davis, CA, USA
                Author notes
                Correspondence to: Paramita M. Ghosh, paghosh@ 123456ucdavis.edu
                Article
                201
                10.18632/genesandcancer.201
                7289903
                32577154
                8d5a47c4-4b1f-44ed-9b7b-997cac1e9230
                Copyright: © 2020 Kiss et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 December 2019
                : 27 February 2020
                Categories
                Review

                Oncology & Radiotherapy
                bhlhe40/dec1/stra13/sharp2,e-box,pi3k/akt/mtor,ampk,hif-1α
                Oncology & Radiotherapy
                bhlhe40/dec1/stra13/sharp2, e-box, pi3k/akt/mtor, ampk, hif-1α

                Comments

                Comment on this article