6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gadd45beta is a novel mediator of cardiomyocyte apoptosis induced by ischaemia/hypoxia.

      Cardiovascular Research
      Activating Transcription Factor 3, genetics, Animals, Animals, Newborn, Antigens, Differentiation, metabolism, Apoptosis, Cell Hypoxia, Cell Line, Disease Models, Animal, Gene Expression Profiling, methods, Gene Knockdown Techniques, Hemodynamics, Male, Myocardial Ischemia, pathology, physiopathology, Myocytes, Cardiac, Oligonucleotide Array Sequence Analysis, RNA Interference, Rats, Rats, Sprague-Dawley, Repressor Proteins, Time Factors, Transfection, Up-Regulation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Because apoptotic death plays a critical role in cardiomyocyte loss during ischaemic heart injury, a detailed understanding of the mechanisms involved is likely to have a substantial impact on the optimization and development of treatment strategies. The goal of this study was to assess gene profiling during ischaemia/hypoxia and to evaluate the functions of ischaemia/hypoxia-responsive genes in in vivo and in vitro ischaemia/hypoxia-induced cardiomyocyte apoptosis models. DNA microarray analysis and real-time polymerase chain reaction were performed on hearts obtained from an in vivo rat transient ischaemia model and on neonatal rat cardiomyocytes from an in vitro hypoxia model. Three genes, namely Ddit4, Gadd45beta and Atf3, were found to be up-regulated in vivo and in vitro. Using loss-of-function and gain-of-function techniques, the functions of these ischaemia/hypoxia-responsive genes were evaluated. Ischaemia/hypoxia-induced cardiomyocyte apoptosis was remarkably attenuated by the small interfering RNA-mediated down-regulation of Gadd45beta in vivo and in vitro, whereas ectopic Gadd45beta expression significantly aggravated hypoxia-induced apoptosis in vitro. These results suggest that Gadd45beta is a key player in ischaemia/hypoxia-induced apoptotic cardiomyocyte death, and that strategies based on its inhibition might be of benefit in the treatment of acute ischaemic heart disease.

          Related collections

          Author and article information

          Comments

          Comment on this article