1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding the transmission pathways of Lassa fever: A mathematical modeling approach

      research-article
      ,
      Infectious Disease Modelling
      KeAi Publishing
      Transmission, Dynamics, Mastomys, Lassa fever

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spread of Lassa fever infection is increasing in West Africa over the last decade. The impact of this can better be understood when considering the various possible transmission routes. We designed a mathematical model for the epidemiology of Lassa Fever using a system of nonlinear ordinary differential equations to determine the effect of transmission pathways toward the infection progression in humans and rodents including those usually neglected such as the environmental surface and aerosol routes. We analyzed the model and carried out numerical simulations to determine the impact of each transmission routes. Our results showed that the burden of Lassa fever infection is increased when all the transmission routes are incorporated and most single transmission routes are less harmful, but when in combination with other transmission routes, they increase the Lassa fever burden. It is therefore important to consider multiple transmission routes to better estimate the Lassa fever burden optimally and in turn determine control strategies targeted at the transmission pathways.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A methodology for performing global uncertainty and sensitivity analysis in systems biology.

          Accuracy of results from mathematical and computer models of biological systems is often complicated by the presence of uncertainties in experimental data that are used to estimate parameter values. Current mathematical modeling approaches typically use either single-parameter or local sensitivity analyses. However, these methods do not accurately assess uncertainty and sensitivity in the system as, by default, they hold all other parameters fixed at baseline values. Using techniques described within we demonstrate how a multi-dimensional parameter space can be studied globally so all uncertainties can be identified. Further, uncertainty and sensitivity analysis techniques can help to identify and ultimately control uncertainties. In this work we develop methods for applying existing analytical tools to perform analyses on a variety of mathematical and computer models. We compare two specific types of global sensitivity analysis indexes that have proven to be among the most robust and efficient. Through familiar and new examples of mathematical and computer models, we provide a complete methodology for performing these analyses, in both deterministic and stochastic settings, and propose novel techniques to handle problems encountered during these types of analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.

            A precise definition of the basic reproduction number, R0, is presented for a general compartmental disease transmission model based on a system of ordinary differential equations. It is shown that, if R0 1, then it is unstable. Thus, R0 is a threshold parameter for the model. An analysis of the local centre manifold yields a simple criterion for the existence and stability of super- and sub-threshold endemic equilibria for R0 near one. This criterion, together with the definition of R0, is illustrated by treatment, multigroup, staged progression, multistrain and vector-host models and can be applied to more complex models. The results are significant for disease control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamical models of tuberculosis and their applications.

              The reemergence of tuberculosis (TB) from the 1980s to the early 1990s instigated extensive researches on the mechanisms behind the transmission dynamics of TB epidemics. This article provides a detailed review of the work on the dynamics and control of TB. The earliest mathematical models describing the TB dynamics appeared in the 1960s and focused on the prediction and control strategies using simulation approaches. Most recently developed models not only pay attention to simulations but also take care of dynamical analysis using modern knowledge of dynamical systems. Questions addressed by these models mainly concentrate on TB control strategies, optimal vaccination policies, approaches toward the elimination of TB in the U.S.A., TB co-infection with HIV/AIDS, drug-resistant TB, responses of the immune system, impacts of demography, the role of public transportation systems, and the impact of contact patterns. Model formulations involve a variety of mathematical areas, such as ODEs (Ordinary Differential Equations) (both autonomous and non-autonomous systems), PDEs (Partial Differential Equations), system of difference equations, system of integro-differential equations, Markov chain model, and simulation models.
                Bookmark

                Author and article information

                Contributors
                Journal
                Infect Dis Model
                Infect Dis Model
                Infectious Disease Modelling
                KeAi Publishing
                2468-2152
                2468-0427
                30 November 2022
                March 2023
                30 November 2022
                : 8
                : 1
                : 27-57
                Affiliations
                [1]Department of Mathematics and Applied Mathematics, University of Johannesburg, Cnr Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
                Author notes
                []Corresponding author. fchirove@ 123456uj.ac.za
                Article
                S2468-0427(22)00093-8
                10.1016/j.idm.2022.11.010
                9762202
                36582748
                8dbcc31d-7839-4d68-b104-13f24debdd55
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 22 September 2022
                : 21 November 2022
                : 23 November 2022
                Categories
                Article

                transmission,dynamics,mastomys,lassa fever
                transmission, dynamics, mastomys, lassa fever

                Comments

                Comment on this article