8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeted interplay between bacterial pathogens and host autophagy

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Due to the critical role played by autophagy in pathogen clearance, pathogens have developed diverse strategies to subvert it. Despite previous key findings of bacteria-autophagy interplay, asystems-level insight into selective targeting by the host and autophagy modulation by the pathogens is lacking. We predicted potential interactions between human autophagy proteins and effector proteins from 56 pathogenic bacterial species by identifying bacterial proteins predicted to have recognition motifs for selective autophagy receptors SQSTM1/p62, CALCOCO2/NDP52 and MAP1LC3/LC3. Using structure-based interaction prediction, we identified bacterial proteins capable to modify core autophagy components. Our analysis revealed that autophagy receptors in general potentially target mostly genus-specific proteins, and not those present in multiple genera. The complementarity between the predicted SQSTM1/p62 and CALCOCO2/NDP52 targets, which has been shown for  SalmonellaListeria and  Shigella, could be observed across other pathogens. This complementarity potentially leaves the host more susceptible to chronic infections upon the mutation of autophagy receptors. Proteins derived from enterotoxigenic and non-toxigenic  Bacillus outer membrane vesicles indicated that autophagy targets pathogenic proteins rather than non-pathogenic ones. We also observed apathogen-specific pattern as to which autophagy phase could be modulated by specific genera. We found intriguing examples of bacterial proteins that could modulate autophagy, and in turn being targeted by autophagy as ahost defense mechanism. We confirmed experimentally an interplay between a  Salmonella protease, YhjJ and autophagy. Our comparative meta-analysis points out key commonalities and differences in how pathogens could affect autophagy and how autophagy potentially recognizes these pathogenic effectors.

          Abbreviations: ATG5: autophagy related 5; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; GST: glutathione S-transferase; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3 alpha; OMV: outer membrane vesicles; SQSTM1/p62: sequestosome 1; SCV: Salmonella containing vesicle; TECPR1: tectonin beta-propeller repeat containing 1; YhjJ: hypothetical zinc-protease.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant.

          Two cassettes with tetracycline-resistance (TcR) and kanamycin-resistance (KmR) determinants have been developed for the construction of insertion and deletion mutants of cloned genes in Escherichia coli. In both cassettes, the resistance determinants are flanked by the short direct repeats (FRT sites) required for site-specific recombination mediated by the yeast Flp recombinase. In addition, a plasmid with temperature-sensitive replication for temporal production of the Flp enzyme in E. coli has been constructed. After a gene disruption or deletion mutation is constructed in vitro by insertion of one of the cassettes into a given gene, the mutated gene is transferred to the E. coli chromosome by homologous recombination and selection for the antibiotic resistance provided by the cassette. If desired, the resistance determinant can subsequently be removed from the chromosome in vivo by Flp action, leaving behind a short nucleotide sequence with one FRT site and with no polar effect on downstream genes. This system was applied in the construction of an E. coli endA deletion mutation which can be transduced by P1 to the genetic background of interest using TcR as a marker. The transductant can then be freed of the TcR if required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Automatic clustering of orthologs and in-paralogs from pairwise species comparisons.

            Orthologs are genes in different species that originate from a single gene in the last common ancestor of these species. Such genes have often retained identical biological roles in the present-day organisms. It is hence important to identify orthologs for transferring functional information between genes in different organisms with a high degree of reliability. For example, orthologs of human proteins are often functionally characterized in model organisms. Unfortunately, orthology analysis between human and e.g. invertebrates is often complex because of large numbers of paralogs within protein families. Paralogs that predate the species split, which we call out-paralogs, can easily be confused with true orthologs. Paralogs that arose after the species split, which we call in-paralogs, however, are bona fide orthologs by definition. Orthologs and in-paralogs are typically detected with phylogenetic methods, but these are slow and difficult to automate. Automatic clustering methods based on two-way best genome-wide matches on the other hand, have so far not separated in-paralogs from out-paralogs effectively. We present a fully automatic method for finding orthologs and in-paralogs from two species. Ortholog clusters are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for both orthologs and in-paralogs. The program, called INPARANOID, was tested on all completely sequenced eukaryotic genomes. To assess the quality of INPARANOID results, ortholog clusters were generated from a dataset of worm and mammalian transmembrane proteins, and were compared to clusters derived by manual tree-based ortholog detection methods. This study led to the identification with a high degree of confidence of over a dozen novel worm-mammalian ortholog assignments that were previously undetected because of shortcomings of phylogenetic methods.A WWW server that allows searching for orthologs between human and several fully sequenced genomes is installed at http://www.cgb.ki.se/inparanoid/. This is the first comprehensive resource with orthologs of all fully sequenced eukaryotic genomes. Programs and tables of orthology assignments are available from the same location. Copyright 2001 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins.

              The structural stability of a protein requires a large number of interresidue interactions. The energetic contribution of these can be approximated by low-resolution force fields extracted from known structures, based on observed amino acid pairing frequencies. The summation of such energies, however, cannot be carried out for proteins whose structure is not known or for intrinsically unstructured proteins. To overcome these limitations, we present a novel method for estimating the total pairwise interaction energy, based on a quadratic form in the amino acid composition of the protein. This approach is validated by the good correlation of the estimated and actual energies of proteins of known structure and by a clear separation of folded and disordered proteins in the energy space it defines. As the novel algorithm has not been trained on unstructured proteins, it substantiates the concept of protein disorder, i.e. that the inability to form a well-defined 3D structure is an intrinsic property of many proteins and protein domains. This property is encoded in their sequence, because their biased amino acid composition does not allow sufficient stabilizing interactions to form. By limiting the calculation to a predefined sequential neighborhood, the algorithm was turned into a position-specific scoring scheme that characterizes the tendency of a given amino acid to fall into an ordered or disordered region. This application we term IUPred and compare its performance with three generally accepted predictors, PONDR VL3H, DISOPRED2 and GlobPlot on a database of disordered proteins.
                Bookmark

                Author and article information

                Journal
                Autophagy
                Autophagy
                KAUP
                kaup20
                Autophagy
                Taylor & Francis
                1554-8627
                1554-8635
                2019
                25 March 2019
                25 March 2019
                : 15
                : 9
                : 1620-1633
                Affiliations
                [a ]Earlham Institute, Norwich Research Park , Norwich, UK
                [b ]Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park , Norwich, UK
                [c ]Department of Chronic Diseases, Metabolism and Ageing, KU Leuven , Leuven, Belgium
                [d ]School of Life Sciences, University of Warwick , Coventry, UK
                [e ]Current affiliation:Exaelements LTD , Coventry, UK
                [f ]Department of Genetics, Eotvos Lorand University , Budapest, Hungary
                [g ]Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences , Szeged, Hungary
                Author notes
                CONTACT Tamas Korcsmaros Tamas.Korcsmaros@ 123456earlham.ac.uk Earlham Institute, Norwich Research Park , Norwich NR4 7UZ, UK
                [*]

                Tamas Korcsmaros and Ioannis P. Nezis these two authors are joint corresponding authors

                Author information
                http://orcid.org/0000-0003-1717-996X
                Article
                1590519
                10.1080/15548627.2019.1590519
                6693458
                30909843
                8dd9c5b3-5a7e-40fc-97b8-8149ae79509c
                © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 May 2017
                : 21 February 2019
                : 1 March 2019
                Page count
                Figures: 4, Tables: 2, References: 93, Pages: 14
                Funding
                Funded by: Biotechnology and Biological Sciences Research Council (BBSRC)
                Award ID: BB/P007856/1
                Funded by: Biotechnology and Biological Sciences Research Council (BBSRC)
                Award ID: BB/P016774/1
                Funded by: Biotechnology and Biological Sciences Research Council (BBSRC)
                Award ID: BB/J004529/1
                Funded by: Biotechnology and Biological Sciences Research Council (BBSRC)
                Award ID: BB/L006324/1
                This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) [BB/P007856/1]; Biotechnology and Biological Sciences Research Council (BBSRC) [BB/P016774/1]; Biotechnology and Biological Sciences Research Council (BBSRC) [BB/J004529/1]; Biotechnology and Biological Sciences Research Council (BBSRC) [BB/L006324/1].
                Categories
                Brief Report - Basic Science

                Molecular biology
                autophagy,bacterial regulation of host,map1lc3/lc3,map1lc3/lc3-interacting region motif,microbiota,calcoco2/ndp52,sqstm1/p62,pathogen recognition,interplay

                Comments

                Comment on this article