134
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Autophagy Inhibition Compromises Degradation of Ubiquitin-Proteasome Pathway Substrates

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The two main routes that cells use for degrading intracellular proteins are the ubiquitin-proteasome and autophagy-lysosome pathways, which have been thought to have largely distinct clients. Here, we show that autophagy inhibition increases levels of proteasome substrates. This is largely due to p62 (also called A170/SQSTM1) accumulation after autophagy inhibition. Excess p62 inhibits the clearance of ubiquitinated proteins destined for proteasomal degradation by delaying their delivery to the proteasome's proteases. Our data show that autophagy inhibition, which was previously believed to only affect long-lived proteins, will also compromise the ubiquitin-proteasome system. This will lead to increased levels of short-lived regulatory proteins, like p53, as well as the accumulation of aggregation-prone proteins, with predicted deleterious consequences.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Mdm2 promotes the rapid degradation of p53.

          The p53 tumour-suppressor protein exerts antiproliferative effects, including growth arrest and apoptosis, in response to various types of stress. The activity of p53 is abrogated by mutations that occur frequently in tumours, as well as by several viral and cellular proteins. The Mdm2 oncoprotein is a potent inhibitor of p53. Mdm2 binds the transcriptional activation domain of p53 and blocks its ability to regulate target genes and to exert antiproliferative effects. On the other hand, p53 activates the expression of the mdm2 gene in an autoregulatory feedback loop. The interval between p53 activation and consequent Mdm2 accumulation defines a time window during which p53 exerts its effects. We now report that Mdm2 also promotes the rapid degradation of p53 under conditions in which p53 is otherwise stabilized. This effect of Mdm2 requires binding of p53; moreover, a small domain of p53, encompassing the Mdm2-binding site, confers Mdm2-dependent detstabilization upon heterologous proteins. Raised amounts of Mdm2 strongly repress mutant p53 accumulation in tumour-derived cells. During recovery from DNA damage, maximal Mdm2 induction coincides with rapid p53 loss. We propose that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagosome formation: core machinery and adaptations.

            Eukaryotic cells employ autophagy to degrade damaged or obsolete organelles and proteins. Central to this process is the formation of autophagosomes, double-membrane vesicles responsible for delivering cytoplasmic material to lysosomes. In the past decade many autophagy-related genes, ATG, have been identified that are required for selective and/or nonselective autophagic functions. In all types of autophagy, a core molecular machinery has a critical role in forming sequestering vesicles, the autophagosome, which is the hallmark morphological feature of this dynamic process. Additional components allow autophagy to adapt to the changing needs of the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein.

              Trehalose, a disaccharide present in many non-mammalian species, protects cells against various environmental stresses. Whereas some of the protective effects may be explained by its chemical chaperone properties, its actions are largely unknown. Here we report a novel function of trehalose as an mTOR-independent autophagy activator. Trehalose-induced autophagy enhanced the clearance of autophagy substrates like mutant huntingtin and the A30P and A53T mutants of alpha-synuclein, associated with Huntington disease (HD) and Parkinson disease (PD), respectively. Furthermore, trehalose and mTOR inhibition by rapamycin together exerted an additive effect on the clearance of these aggregate-prone proteins because of increased autophagic activity. By inducing autophagy, we showed that trehalose also protects cells against subsequent pro-apoptotic insults via the mitochondrial pathway. The dual protective properties of trehalose (as an inducer of autophagy and chemical chaperone) and the combinatorial strategy with rapamycin may be relevant to the treatment of HD and related diseases, where the mutant proteins are autophagy substrates.
                Bookmark

                Author and article information

                Journal
                Mol Cell
                Molecular Cell
                Cell Press
                1097-2765
                1097-4164
                27 February 2009
                27 February 2009
                : 33
                : 4
                : 517-527
                Affiliations
                [1 ]Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
                Author notes
                []Corresponding author dcr1000@ 123456cam.ac.uk
                [2]

                These authors contributed equally to this work

                Article
                MOLCEL3010
                10.1016/j.molcel.2009.01.021
                2669153
                19250912
                8e03b979-9af2-4b6b-9948-701f617ac1e0
                © 2009 ELL & Excerpta Medica.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 30 June 2008
                : 29 October 2008
                : 23 January 2009
                Categories
                Article

                Molecular biology
                proteins
                Molecular biology
                proteins

                Comments

                Comment on this article