22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In vitro evaluation of P-glycoprotein (P-gp) inhibitory potential is now a regulatory issue during drug development, in order to predict clinical inhibition of P-gp and subsequent drug–drug interactions. Assays for this purpose, commonly based on P-gp-expressing cell lines and digoxin as a reference P-gp substrate probe, unfortunately exhibit high variability, raising thus the question of developing alternative or complementary tests for measuring inhibition of P-gp activity. In this context, the present study was designed to investigate the use of the fluorescent dye rhodamine 123 as a reference P-gp substrate probe for characterizing P-gp inhibitory potential of 16 structurally-unrelated drugs known to interact with P-gp. 14/16 of these P-gp inhibitors were found to increase rhodamine 123 accumulation in P-gp-overexpressing MCF7R cells, thus allowing the determination of their P-gp inhibitory potential, i.e., their half maximal inhibitor concentration (IC 50) value towards P-gp-mediated transport of the dye. These IC 50 values were in the range of variability of previously reported IC 50 for P-gp and can be used for the prediction of clinical P-gp inhibition according to Food and Drug Administration (FDA) criteria, with notable sensitivity (80%). Therefore, the data demonstrated the feasibility of the use of rhodamine 123 for evaluating the P-gp inhibitory potential of drugs.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane transporters in drug development.

          Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug-induced mitochondrial dysfunction and cardiotoxicity.

            Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition.

              S-F Zhou (2008)
              1. P-glycoprotein (P-gp/MDR1), one of the most clinically important transmembrane transporters in humans, is encoded by the ABCB1/MDR1 gene. Recent insights into the structural features of P-gp/MDR1 enable a re-evaluation of the biochemical evidence on the binding and transport of drugs by P-gp/MDR1. 2. P-gp/MDR1 is found in various human tissues in addition to being expressed in tumours cells. It is located on the apical surface of intestinal epithelial cells, bile canaliculi, renal tubular cells, and placenta and the luminal surface of capillary endothelial cells in the brain and testes. 3. P-gp/MDR1 confers a multi-drug resistance (MDR) phenotype to cancer cells that have developed resistance to chemotherapy drugs. P-gp/MDR1 activity is also of great clinical importance in non-cancer-related drug therapy due to its wide-ranging effects on the absorption and excretion of a variety of drugs. 4. P-gp/MDR1 excretes xenobiotics such as cytotoxic compounds into the gastrointestinal tract, bile and urine. It also participates in the function of the blood-brain barrier. 5. One of the most interesting characteristics of P-gp/MDR1 is that its many substrates vary greatly in their structure and functionality, ranging from small molecules such as organic cations, carbohydrates, amino acids and some antibiotics to macromolecules such as polysaccharides and proteins. 6. Quite a number of single nucleotide polymorphisms have been found for the MDR1 gene. These single nucleotide polymorphisms are associated with altered oral bioavailability of P-gp/MDR1 substrates, drug resistance, and a susceptibility to some human diseases. 7. Altered P-gp/MDR1 activity due to induction and/or inhibition can cause drug-drug interactions with altered drug pharmacokinetics and response. 8. Further studies are warranted to explore the physiological function and pharmacological role of P-gp/MDR1.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Pharmaceutics
                Pharmaceutics
                pharmaceutics
                Pharmaceutics
                MDPI
                1999-4923
                12 April 2016
                June 2016
                : 8
                : 2
                : 12
                Affiliations
                [1 ]Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; elodie.jouan@ 123456gmail.com (E.J.); marc.levee@ 123456free.fr (M.L.V.); abdullah.mayati@ 123456univ-rennes1.fr (A.M.)
                [2 ]Centre de Pharmacocinétique, Technologie Servier, 25-27 Rue Eugène Vignat, 45000 Orléans, France; claire.denizot@ 123456servier.com (C.D.); yannick.parmentier@ 123456servier.com (Y.P.)
                [3 ]Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri le Guilloux, 35033 Rennes, France
                Author notes
                [* ]Correspondence: olivier.fardel@ 123456univ-rennes1.fr ; Tel.: +33-223-23-4880
                Article
                pharmaceutics-08-00012
                10.3390/pharmaceutics8020012
                4932475
                27077878
                8e4bc4fa-d830-4066-82f1-f2de4608fb44
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 January 2016
                : 06 April 2016
                Categories
                Article

                p-glycoprotein,inhibition,drug–drug interactions,rhodamine 123,digoxin

                Comments

                Comment on this article

                scite_

                Similar content131

                Cited by29

                Most referenced authors703