Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sensitivity Encoding for Aligned Multishot Magnetic Resonance Reconstruction

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Advances in sensitivity encoding with arbitrary k-space trajectories.

          New, efficient reconstruction procedures are proposed for sensitivity encoding (SENSE) with arbitrary k-space trajectories. The presented methods combine gridding principles with so-called conjugate-gradient iteration. In this fashion, the bulk of the work of reconstruction can be performed by fast Fourier transform (FFT), reducing the complexity of data processing to the same order of magnitude as in conventional gridding reconstruction. Using the proposed method, SENSE becomes practical with nonstandard k-space trajectories, enabling considerable scan time reduction with respect to mere gradient encoding. This is illustrated by imaging simulations with spiral, radial, and random k-space patterns. Simulations were also used for investigating the convergence behavior of the proposed algorithm and its dependence on the factor by which gradient encoding is reduced. The in vivo feasibility of non-Cartesian SENSE imaging with iterative reconstruction is demonstrated by examples of brain and cardiac imaging using spiral trajectories. In brain imaging with six receiver coils, the number of spiral interleaves was reduced by factors ranging from 2 to 6. In cardiac real-time imaging with four coils, spiral SENSE permitted reducing the scan time per image from 112 ms to 56 ms, thus doubling the frame-rate. Copyright 2001 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Motion artifacts in MRI: A complex problem with many partial solutions.

            Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artifacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artifacts, but no single method can be applied in all imaging situations. Instead, a "toolbox" of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artifacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artifacts, with the aim of aiding artifact detection and mitigation in particular clinical situations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Array compression for MRI with large coil arrays.

              Arrays with large numbers of independent coil elements are becoming increasingly available as they provide increased signal-to-noise ratios (SNRs) and improved parallel imaging performance. Processing of data from a large set of independent receive channels is, however, associated with an increased memory and computational load in reconstruction. This work addresses this problem by introducing coil array compression. The method allows one to reduce the number of datasets from independent channels by combining all or partial sets in the time domain prior to image reconstruction. It is demonstrated that array compression can be very effective depending on the size of the region of interest (ROI). Based on 2D in vivo data obtained with a 32-element phased-array coil in the heart, it is shown that the number of channels can be compressed to as few as four with only 0.3% SNR loss in an ROI encompassing the heart. With twofold parallel imaging, only a 2% loss in SNR occurred using the same compression factor.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Computational Imaging
                IEEE Trans. Comput. Imaging
                Institute of Electrical and Electronics Engineers (IEEE)
                2333-9403
                2334-0118
                September 2016
                September 2016
                : 2
                : 3
                : 266-280
                Article
                10.1109/TCI.2016.2557069
                8ea7dbf7-0c85-4d95-9593-f75ef14051a9
                © 2016
                History

                Comments

                Comment on this article