7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stabilization of Crystalline Carotenoids in Carrot Concentrate Powders: Effects of Drying Technology, Carrier Material, and Antioxidants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coloring concentrates of carotenoid-rich plant materials are currently used in the food industry to meet the consumer’s demand for natural substitutes for food colorants. The production of shelf-stable powders of such concentrates comes with particular challenges linked to the sensitivity of the active component towards oxidation and the complexity of the composition and microstructure of such concentrates. In this study, different strategies for the stabilization of crystalline carotenoids as part of a natural carrot concentrate matrix during drying and storage were investigated. The evaluated approaches included spray- and freeze drying, the addition of functional additives, and oxygen free storage. Functional additives comprised carrier material (maltodextrin, gum Arabic, and octenyl succinic anhydride (OSA)-modified starch) and antioxidants (mixed tocopherols, sodium ascorbate). Degradation and changes in the physical state of the carotenoid crystals were monitored during processing and storage. Carotenoid losses during processing were low (>5%) irrespective of the used technology and additives. During storage, samples stored in nitrogen showed the highest carotenoid retention (97–100%). The carotenoid retention in powders stored with air access varied between 12.3% ± 2.1% and 66.0% ± 5.4%, having been affected by the particle structure as well as the formulation components used. The comparative evaluation of the tested strategies allows a more targeted design of processing and formulation of functional carrot concentrate powders.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Factors influencing the chemical stability of carotenoids in foods.

          In recent years, a number of studies have produced evidence to suggest that consuming carotenoids may provide a variety of health benefits including a reduced incidence of a number of cancers, reduced risk of cardiovascular disease, and improved eye health. Evolving evidence on the health benefits of several carotenoids has sparked interest in incorporating more carotenoids into functional food products. Unfortunately, the same structural attributes of carotenoids that are thought to impart health benefits also make these compounds highly susceptible to oxidation. Given the susceptibility of carotenoids to degradation, particularly once they have been extracted from biological tissues, it is important to understand the major mechanisms of oxidation in order to design delivery systems that protect these compounds when they are used as functional food ingredients. This article reviews current understanding of the oxidation mechanisms by which carotenoids are degraded, including pathways induced by heat, light, oxygen, acid, transition metal, or interactions with radical species. In addition, several carotenoid delivery systems are evaluated for their potential to decrease carotenoid degradation in functional food products.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical composition, functional properties and processing of carrot-a review.

            Carrot is one of the important root vegetables rich in bioactive compounds like carotenoids and dietary fibers with appreciable levels of several other functional components having significant health-promoting properties. The consumption of carrot and its products is increasing steadily due to its recognition as an important source of natural antioxidants having anticancer activity. Apart from carrot roots being traditionally used in salad and preparation of curries in India, these could commercially be converted into nutritionally rich processed products like juice, concentrate, dried powder, canned, preserve, candy, pickle, and gazrailla. Carrot pomace containing about 50% of β-carotene could profitably be utilized for the supplementation of products like cake, bread, biscuits and preparation of several types of functional products. The present review highlights the nutritional composition, health promoting phytonutrients, functional properties, products development and by-products utilization of carrot and carrot pomace along with their potential application.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids.

              Carotenoids are lipophilic secondary plant compounds, and their consumption within fruits and vegetables has been positively correlated with a decreased risk of developing several chronic diseases. However, their bioavailability is often compromised due to incomplete release from the food matrix, poor solubility and potential degradation during digestion. In addition, carotenoids in food products are prone to oxidative degradation, not only lowering the nutritional value of the product but also triggering other quality deteriorative changes, such as formation of lipid pro-oxidants (free radicals), development of discolorations or off-flavor defects. Encapsulation refers to a physicochemical process, aiming to entrap an active substance in structurally engineered micro- or nano-systems, in order to develop an effective thermodynamical and physical barrier against deteriorative environmental conditions, such as water vapor, oxygen, light, enzymes or pH. In this context, encapsulation of carotenoids has shown to be a very effective strategy to improve their chemical stability under common processing conditions including storage. In addition, encapsulation may also enhance bioavailability (via influencing bioaccessibility and absorption) of lipophilic bioactives, via modulating their release kinetics from the carrier system, solubility and interfacial properties. In the present paper, it is aimed to present the state of the art of carotenoid microencapsulation in order to enhance storability and bioavailability alike.
                Bookmark

                Author and article information

                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                25 July 2019
                August 2019
                : 8
                : 8
                : 285
                Affiliations
                [1 ]Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
                [2 ]GNT Europa GmbH, 52072 Aachen, Germany
                Author notes
                [* ]Correspondence: Klara.haas@ 123456boku.ac.at
                Article
                foods-08-00285
                10.3390/foods8080285
                6724047
                31349652
                8ed02c0f-160e-448f-aefd-9b7ff065974c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 June 2019
                : 23 July 2019
                Categories
                Article

                spray drying,freeze drying,antioxidants,carotenoid aggregates,coloring foods

                Comments

                Comment on this article