18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-Oxidants in Parkinson’s Disease Therapy: A Critical Point of View

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson’s disease (PD) is a degenerative neurological syndrome, which is characterized by the preferential death of dopaminergic (DAergic) neurons in the Substantia Nigra. The pathogenesis of this disorder remains poorly understood and PD is still incurable. Current drug treatments are aimed primarily for the treatment of symptoms to improve the quality of life. Therefore, there is a need to find out new therapeutic strategies that not only provide symptomatic relief but also halt or reverse the neuronal damage hampering PD progression. Oxidative stress has been identified as one of the major contributors for the nigral loss in both sporadic and genetic forms of PD. In this review we first evaluate the current literature that links oxidative stress and mitochondrial dysfunction to PD. We then consider the results obtained through the treatment of animal models or PD patients with molecules that prevent oxidative stress or reduce mitochondrial dysfunction.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis.

          Cardiac mitochondrial function is altered in a variety of inherited and acquired cardiovascular diseases. Recent studies have identified the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) as a regulator of mitochondrial function in tissues specialized for thermogenesis, such as brown adipose. We sought to determine whether PGC-1 controlled mitochondrial biogenesis and energy-producing capacity in the heart, a tissue specialized for high-capacity ATP production. We found that PGC-1 gene expression is induced in the mouse heart after birth and in response to short-term fasting, conditions known to increase cardiac mitochondrial energy production. Forced expression of PGC-1 in cardiac myocytes in culture induced the expression of nuclear and mitochondrial genes involved in multiple mitochondrial energy-transduction/energy-production pathways, increased cellular mitochondrial number, and stimulated coupled respiration. Cardiac-specific overexpression of PGC-1 in transgenic mice resulted in uncontrolled mitochondrial proliferation in cardiac myocytes leading to loss of sarcomeric structure and a dilated cardiomyopathy. These results identify PGC-1 as a critical regulatory molecule in the control of cardiac mitochondrial number and function in response to energy demands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease.

            To achieve accuracy in studying the patterns of loss of midbrain dopamine-containing neurons in Parkinson's disease, we used compartmental patterns of calbindin D(28K) immunostaining to subdivide the substantia nigra with landmarks independent of the degenerative process. Within the substantia nigra pars compacta, we identified dopamine-containing neurons in the calbindin-rich regions ('matrix') and in five calbindin-poor pockets ('nigrosomes') defined by analysis of the three-dimensional networks formed by the calbindin-poor zones. These zones were recognizable in all of the brains, despite severe loss of dopamine-containing neurons. The degree of loss of dopamine-containing neurons in the substantia nigra pars compacta was related to the duration of the disease, and the cell loss followed a strict order. The degree of neuronal loss was significantly higher in the nigrosomes than in the matrix. Depletion was maximum (98%) in the main pocket (nigrosome 1), located in the caudal and mediolateral part of the substantia nigra pars compacta. Progressively less cell loss was detectable in more medial and more rostral nigrosomes, following the stereotyped order of nigrosome 1 > nigrosome 2 > nigrosome 4 > nigrosome 3 > nigrosome 5. A parallel, but lesser, caudorostral gradient of cell loss was observed for dopamine-containing neurons included in the matrix. This pattern of neuronal loss was consistent from one parkinsonian substantia nigra pars compacta to another. The spatiotemporal progression of neuronal loss related to disease duration can thus be drawn in the substantia nigra pars compacta for each Parkinson's disease patient: depletion begins in the main pocket (nigrosome 1) and then spreads to other nigrosomes and the matrix along rostral, medial and dorsal axes of progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting antioxidants to mitochondria by conjugation to lipophilic cations.

              Mitochondrial oxidative damage contributes to a range of degenerative diseases. Consequently, the selective inhibition of mitochondrial oxidative damage is a promising therapeutic strategy. One way to do this is to invent antioxidants that are selectively accumulated into mitochondria within patients. Such mitochondria-targeted antioxidants have been developed by conjugating the lipophilic triphenylphosphonium cation to an antioxidant moiety, such as ubiquinol or alpha-tocopherol. These compounds pass easily through all biological membranes, including the blood-brain barrier, and into muscle cells and thus reach those tissues most affected by mitochondrial oxidative damage. Furthermore, because of their positive charge they are accumulated several-hundredfold within mitochondria driven by the membrane potential, enhancing the protection of mitochondria from oxidative damage. These compounds protect mitochondria from damage following oral delivery and may therefore form the basis for mitochondria-protective therapies. Here we review the background and work to date on this class of mitochondria-targeted antioxidants.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers
                1570-159X
                1875-6190
                April 2016
                April 2016
                : 14
                : 3
                : 260-271
                Affiliations
                Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
                Author notes
                [* ]Address correspondence to this author at the Marco Bisaglia, Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121 Padova, Italy; Tel: +390498276329; Fax: +390498276300; E-mail: marco.bisaglia@ 123456unipd.it
                Article
                CN-14-260
                10.2174/1570159X13666151030102718
                4857623
                26517052
                8ed7b16f-89c2-4d91-b298-c6145c11877f
                ©2016 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 2 March 2015
                : 1 June 2015
                : 1 June 2015
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                antioxidants,iron chelators,mitochondria,oxidative stress,radical scavengers,reactive oxygen species.

                Comments

                Comment on this article