8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PUF-RLA: A PUF-based Reliable and Lightweight Authentication Protocol employing Binary String Shuffling

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Physically unclonable functions (PUFs) can be employed for device identification, authentication, secret key storage, and other security tasks. However, PUFs are susceptible to modeling attacks if a number of PUFs' challenge-response pairs (CRPs) are exposed to the adversary. Furthermore, many of the embedded devices requiring authentication have stringent resource constraints and thus require a lightweight authentication mechanism. We propose PUF-RLA, a PUF-based lightweight, highly reliable authentication scheme employing binary string shuffling. The proposed scheme enhances the reliability of PUF as well as alleviates the resource constraints by employing error correction in the server instead of the device without compromising the security. The proposed PUF-RLA is robust against brute force, replay, and modeling attacks. In PUF-RLA, we introduce an inexpensive yet secure stream authentication scheme inside the device which authenticates the server before the underlying PUF can be invoked. This prevents an adversary from brute forcing the device's PUF to acquire CRPs essentially locking out the device from unauthorized model generation. Additionally, we also introduce a lightweight CRP obfuscation mechanism involving XOR and shuffle operations. Results and security analysis verify that the PUF-RLA is secure against brute force, replay, and modeling attacks, and provides ~99% reliable authentication. In addition, PUF-RLA provides a reduction of 63% and 74% for look-up tables (LUTs) and register count, respectively, in FPGA compared to a recently proposed approach while providing additional authentication advantages.

          Related collections

          Author and article information

          Journal
          19 July 2020
          Article
          2007.09588
          8ed9d0ce-0049-44d0-a311-28344342076b

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Published in the 2019 IEEE International Conference on Computer Design (ICCD)
          cs.CR

          Security & Cryptology
          Security & Cryptology

          Comments

          Comment on this article