2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The SNP rs4591246 in pri-miR-1-3p is associated with abdominal aortic aneurysm risk by regulating cell phenotypic transformation via the miR-1-3p/TLR4 axis

      , , , , , ,
      International Immunopharmacology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The functions of animal microRNAs.

          MicroRNAs (miRNAs) are small RNAs that regulate the expression of complementary messenger RNAs. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved. With miRNA roles identified in developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the nervous system, evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular regulation of vascular smooth muscle cell differentiation in development and disease.

            The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms/processes that control differentiation of vascular smooth muscle cells (SMC) during normal development and maturation of the vasculature, as well as how these mechanisms/processes are altered in vascular injury or disease. A major challenge in understanding differentiation of the vascular SMC is that this cell can exhibit a wide range of different phenotypes at different stages of development, and even in adult organisms the cell is not terminally differentiated. Indeed, the SMC is capable of major changes in its phenotype in response to changes in local environmental cues including growth factors/inhibitors, mechanical influences, cell-cell and cell-matrix interactions, and various inflammatory mediators. There has been much progress in recent years to identify mechanisms that control expression of the repertoire of genes that are specific or selective for the vascular SMC and required for its differentiated function. One of the most exciting recent discoveries was the identification of the serum response factor (SRF) coactivator gene myocardin that appears to be required for expression of many SMC differentiation marker genes, and for initial differentiation of SMC during development. However, it is critical to recognize that overall control of SMC differentiation/maturation, and regulation of its responses to changing environmental cues, is extremely complex and involves the cooperative interaction of many factors and signaling pathways that are just beginning to be understood. There is also relatively recent evidence that circulating stem cell populations can give rise to smooth muscle-like cells in association with vascular injury and atherosclerotic lesion development, although the exact role and properties of these cells remain to be clearly elucidated. The goal of this review is to summarize the current state of our knowledge in this area and to attempt to identify some of the key unresolved challenges and questions that require further study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA.

              MicroRNAs (miRNAs) are small non-coding RNAs that inhibit expression of specific target genes at the post-transcriptional level. Sequence variations in miRNA genes, including pri-miRNAs, pre-miRNAs and mature miRNAs, could potentially influence the processing and/or target selection of miRNAs. In this study, we have systematically identified single nucleotide polymorphisms (SNPs) associated with 227 known human miRNAs. Among 323 total SNPs that we identify, 12 are located within the miRNA precursor and one is at the eighth nucleotide (+8) of the mature miR-125a, which has been proposed to play a critical role in recognition of mRNA targets by miRNAs. Through a series of in vivo analyses, we unexpectedly find that this miR-125a SNP significantly blocks the processing of pri-miRNA to pre-miRNA, in addition to reducing miRNA-mediated translational suppression. Thus, our study reveals an additional structural requirement for pri-miRNA processing and emphasizes the importance of identifying new miRNA SNPs and their contributions to miRNA biogenesis and human genetic disease.
                Bookmark

                Author and article information

                Journal
                International Immunopharmacology
                International Immunopharmacology
                Elsevier BV
                15675769
                May 2023
                May 2023
                : 118
                : 110016
                Article
                10.1016/j.intimp.2023.110016
                36931173
                8f5d7cfa-7ccd-438f-b396-f804645fb60d
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article