8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Size Dependency of Post-Disturbance Recovery of Multi-Stemmed Resprouting Trees

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In frequently burned ecosystems, many plants persist by repeated resprouting from basal or belowground buds. This strategy requires that plants reach a balance between biomass loss and recovery, which depends on the shape of the relationship between pre- and post-fire size. Previous analyses of this relationship, however, have focused on the size of the largest stem, which ignores the importance of the multi-stem growth habit that is common in pyrogenic ecosystems. We hypothesized that the presence of multiple stems causes a substantial shift in the relationship between pre- and post-fire size and in the relationship between pre-fire size and size recovery. We measured the height and basal diameter, then calculated volume and biomass, of all stems of six tree species before and nine months after complete removal of aboveground biomass via coppicing. The number of resprouts was correlated with the original number of stems for four species. For all species, the relationship between pre-coppicing and resprout size fit a positive curvilinear function, and the shape of this curve did not differ for maximum and total stem size. Smaller individuals recovered a larger proportion of their pre-coppicing size than larger individuals, but the shape of the size recovery curves were the same regardless of whether the analysis was performed with all stems or only the largest stem. Our results indicate that measuring only the largest stem of multi-stemmed individuals is sufficient to assess the ability of individuals to recover after complete loss of aboveground biomass and persist under frequent burning.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna.

          In frequently burnt mesic savannas, trees can get trapped into a cycle of surviving fire-induced stem death (i.e. topkill) by resprouting, only to be topkilled again a year or two later. The ability of savanna saplings to resprout repeatedly after fire is a key component of recent models of tree-grass coexistence in savannas. This study investigated the carbon allocation and biomass partitioning patterns that enable a dominant savanna tree, Acacia karroo, to survive frequent and repeated topkill. Root starch depletion and replenishment, foliage recovery and photosynthesis of burnt and unburnt plants were compared over the first year after a burn. The concentration of starch in the roots of the burnt plants (0.08 +/- 0.01 g g(-1)) was half that of the unburnt plant (0.16 +/- 0.01 g g(-1)) at the end of the first growing season after topkill. However, root starch reserves of the burnt plants were replenished over the dry season and matched that of unburnt plants within 1 year after topkill. The leaf area of resprouting plants recovered to match that of unburnt plants within 4-5 months after topkill. Shoot growth of resprouting plants was restricted to the first few months of the wet season, whereas photosynthetic rates remained high into the dry season, allowing replenishment of root starch reserves. (14)C labeling showed that reserves were initially utilized for shoot growth after topkill. The rapid foliage recovery and the replenishment of reserves within a single year after topkill implies that A. karroo is well adapted to survive recurrent topkill and is poised to take advantage of unusually long fire-free intervals to grow into adults. This paper provides some of the first empirical evidence to explain how savanna trees in frequently burnt savannas are able to withstand frequent burning as juveniles and survive to become adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates.

            Life forms as diverse as unicellular algae, zooplankton, vascular plants, and mammals appear to obey quarter-power scaling rules. Among the most famous of these rules is Kleiber's (i.e. basal metabolic rates scale as the three-quarters power of body mass), which has a botanical analogue (i.e. annual plant growth rates scale as the three-quarters power of total body mass). Numerous theories have tried to explain why these rules exist, but each has been heavily criticized either on conceptual or empirical grounds. N,P-STOICHIOMETRY: Recent models predicting growth rates on the basis of how total cell, tissue, or organism nitrogen and phosphorus are allocated, respectively, to protein and rRNA contents may provide the answer, particularly in light of the observation that annual plant growth rates scale linearly with respect to standing leaf mass and that total leaf mass scales isometrically with respect to nitrogen but as the three-quarters power of leaf phosphorus. For example, when these relationships are juxtaposed with other allometric trends, a simple N,P-stoichiometric model successfully predicts the relative growth rates of 131 diverse C3 and C4 species. The melding of allometric and N,P-stoichiometric theoretical insights provides a robust modelling approach that conceptually links the subcellular 'machinery' of protein/ribosomal metabolism to observed growth rates of uni- and multicellular organisms. Because the operation of this 'machinery' is basic to the biology of all life forms, its allometry may provide a mechanistic explanation for the apparent ubiquity of quarter-power scaling rules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Caught in a fire trap: recurring fire creates stable size equilibria in woody resprouters.

              Globally, fire maintains many mesic habitats in an open canopy state by killing woody plants while reducing the size of those able to resprout. Where fire is frequent, tree saplings are often suppressed by a "fire trap" of repeated topkill (death of aerial biomoass) and resprouting, preventing them from reaching adult size. The ability to tolerate repeated topkill is an essential life-history trait that allows a sapling to persist until it experiences a long fire-free interval, during which it can escape the fire trap. We hypothesized that persistence in the fire trap results from a curvilinear relationship between pre-burn size and resprout size, which causes a plant to approach an equilibrial size in which post-fire biomass recovery is equal to fire-induced biomass loss. We also predicted that the equilibrial stem size is positively related to resource availability. To test these hypotheses, we collected data on pre-burn and resprout size of five woody plant species at wetland ecotones in longleaf pine savanna subjected to frequent burning. As expected, all species exhibited similar curvilinear relationships between pre-burn size and resprout size. The calculated equilibrial sizes were strong predictors of mean plant size across species and growing conditions, supporting the persistence equilibrium model. An alternative approach using matrix models yielded similar results. Resprouting was less vigorous in dry sites than at wet sites, resulting in smaller equilibrial stem sizes in drier sites; extrapolating these results provides an explanation for the absence of these species in xeric uplands. This new framework offers a straightforward approach to guide data collection for experimental, comparative, and modeling studies of plant persistence and community dynamics in frequently burned habitats.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 August 2014
                : 9
                : 8
                : e105600
                Affiliations
                [1]Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
                Ecole Pratique des Hautes Etudes, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JLS MGJ. Performed the experiments: JLS MGJ. Analyzed the data: JLS MGJ. Contributed to the writing of the manuscript: JLS MGJ.

                [¤]

                Current address: Department of Biology, William Jewell College, Liberty, Missouri, United States of America

                Article
                PONE-D-14-19434
                10.1371/journal.pone.0105600
                4140811
                25144236
                8fd7252f-092f-4a86-9ca7-2a35e80e93c9
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 May 2014
                : 25 July 2014
                Page count
                Pages: 12
                Funding
                This research was supported by a cooperative agreement between the US Army Engineer Research and Development Center and North Carolina State University (W9132T-11-2-0007 to W. Hoffmann). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Ecology
                Plant Ecology
                Terrestrial Ecology
                Ecology and Environmental Sciences
                Research and Analysis Methods
                Research Assessment
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article