13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sketched Subspace Clustering

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          From few to many: illumination cone models for face recognition under variable lighting and pose

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Tutorial on Spectral Clustering

            In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sparse subspace clustering: algorithm, theory, and applications.

              Many real-world problems deal with collections of high-dimensional data, such as images, videos, text, and web documents, DNA microarray data, and more. Often, such high-dimensional data lie close to low-dimensional structures corresponding to several classes or categories to which the data belong. In this paper, we propose and study an algorithm, called sparse subspace clustering, to cluster data points that lie in a union of low-dimensional subspaces. The key idea is that, among the infinitely many possible representations of a data point in terms of other points, a sparse representation corresponds to selecting a few points from the same subspace. This motivates solving a sparse optimization program whose solution is used in a spectral clustering framework to infer the clustering of the data into subspaces. Since solving the sparse optimization program is in general NP-hard, we consider a convex relaxation and show that, under appropriate conditions on the arrangement of the subspaces and the distribution of the data, the proposed minimization program succeeds in recovering the desired sparse representations. The proposed algorithm is efficient and can handle data points near the intersections of subspaces. Another key advantage of the proposed algorithm with respect to the state of the art is that it can deal directly with data nuisances, such as noise, sparse outlying entries, and missing entries, by incorporating the model of the data into the sparse optimization program. We demonstrate the effectiveness of the proposed algorithm through experiments on synthetic data as well as the two real-world problems of motion segmentation and face clustering.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Signal Processing
                IEEE Trans. Signal Process.
                Institute of Electrical and Electronics Engineers (IEEE)
                1053-587X
                1941-0476
                April 1 2018
                April 1 2018
                : 66
                : 7
                : 1663-1675
                Article
                10.1109/TSP.2017.2781649
                8fe4c2f4-f6d6-49a2-8db6-c2bdb50290cc
                © 2018

                History

                Comments

                Comment on this article