16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Automated Algorithm Selection: Survey and Perspectives

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the per-instance algorithm selection problem and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          A review of multiobjective test problems and a scalable test problem toolkit

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sparse multinomial logistic regression: fast algorithms and generalization bounds.

            Recently developed methods for learning sparse classifiers are among the state-of-the-art in supervised learning. These methods learn classifiers that incorporate weighted sums of basis functions with sparsity-promoting priors encouraging the weight estimates to be either significantly large or exactly zero. From a learning-theoretic perspective, these methods control the capacity of the learned classifier by minimizing the number of basis functions used, resulting in better generalization. This paper presents three contributions related to learning sparse classifiers. First, we introduce a true multiclass formulation based on multinomial logistic regression. Second, by combining a bound optimization approach with a component-wise update procedure, we derive fast exact algorithms for learning sparse multiclass classifiers that scale favorably in both the number of training samples and the feature dimensionality, making them applicable even to large data sets in high-dimensional feature spaces. To the best of our knowledge, these are the first algorithms to perform exact multinomial logistic regression with a sparsity-promoting prior. Third, we show how nontrivial generalization bounds can be derived for our classifier in the binary case. Experimental results on standard benchmark data sets attest to the accuracy, sparsity, and efficiency of the proposed methods.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An effective implementation of the Lin–Kernighan traveling salesman heuristic

                Bookmark

                Author and article information

                Journal
                28 November 2018
                Article
                1811.11597
                9020e86d-527e-497b-b5d6-abc3a2254c2e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                This is the author's final version, and the article has been accepted for publication in Evolutionary Computation
                cs.LG cs.AI stat.ML

                Machine learning,Artificial intelligence
                Machine learning, Artificial intelligence

                Comments

                Comment on this article