13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of hydrogen sulfide (H 2S) in inflammation remains unclear with both pro- and anti-inflammatory actions of this gas described. We have now assessed the effect of GYY4137 (a slow-releasing H 2S donor) on lipopolysaccharide (LPS)-evoked release of inflammatory mediators from human synoviocytes (HFLS) and articular chondrocytes (HAC) in vitro. We have also examined the effect of GYY4137 in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. GYY4137 (0.1–0.5 mM) decreased LPS-induced production of nitrite (NO 2 ), PGE 2, TNF-α and IL-6 from HFLS and HAC, reduced the levels and catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced LPS-induced NF-κB activation in vitro. Using recombinant human enzymes, GYY4137 inhibited the activity of COX-2, iNOS and TNF-α converting enzyme (TACE). In the CFA-treated mouse, GYY4137 (50 mg/kg, i.p.) injected 1 hr prior to CFA increased knee joint swelling while an anti-inflammatory effect, as demonstrated by reduced synovial fluid myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAG) activity and decreased TNF-α, IL-1β, IL-6 and IL-8 concentration, was apparent when GYY4137 was injected 6 hrs after CFA. GYY4137 was also anti-inflammatory when given 18 hrs after CFA. Thus, although GYY4137 consistently reduced the generation of pro-inflammatory mediators from human joint cells in vitro, its effect on acute joint inflammation in vivo depended on the timing of administration.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogen sulfide and cell signaling.

          Hydrogen sulfide (H₂S) is a gaseous mediator synthesized from cysteine by cystathionine γ lyase (CSE) and other naturally occurring enzymes. Pharmacological experiments using H₂S donors and genetic experiments using CSE knockout mice suggest important roles for this vasodilator gas in the regulation of blood vessel caliber, cardiac response to ischemia/reperfusion injury, and inflammation. That H₂S inhibits cytochrome c oxidase and reduces cell energy production has been known for many decades, but more recently, a number of additional pharmacological targets for this gas have been identified. H₂S activates K(ATP) and transient receptor potential (TRP) channels but usually inhibits big conductance Ca²(+)-sensitive K(+) (BK(Ca)) channels, T-type calcium channels, and M-type calcium channels. H₂S may inhibit or activate NF-κB nuclear translocation while affecting the activity of numerous kinases including p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt. These disparate effects may be secondary to the well-known reducing activity of H₂S and/or its ability to promote sulfhydration of protein cysteine moieties within the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions.

            Nuclear factor κB (NF-κB) is an antiapoptotic transcription factor. We show that the antiapoptotic actions of NF-κB are mediated by hydrogen sulfide (H(2)S) synthesized by cystathionine gamma-lyase (CSE). TNF-α treatment triples H(2)S generation by stimulating binding of SP1 to the CSE promoter. H(2)S generated by CSE stimulates DNA binding and gene activation of NF-κB, processes that are abolished in CSE-deleted mice. As CSE deletion leads to decreased glutathione levels, resultant oxidative stress may contribute to alterations in CSE mutant mice. H(2)S acts by sulfhydrating the p65 subunit of NF-κB at cysteine-38, which promotes its binding to the coactivator ribosomal protein S3 (RPS3). Sulfhydration of p65 predominates early after TNF-α treatment, then declines and is succeeded by a reciprocal enhancement of p65 nitrosylation. In CSE mutant mice, antiapoptotic influences of NF-κB are markedly diminished. Thus, sulfhydration of NF-κB appears to be a physiologic determinant of its antiapoptotic transcriptional activity. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation.

              Hydrogen sulfide (H2S) is increasingly recognized as an important signaling molecule in the cardiovascular and nervous systems. Recently, H2S donors were reported to induce neutrophil apoptosis and to suppress expression of some leukocyte and endothelial adhesion molecules. Using rats, we examined the possibility that H2S is an endogenous regulator of key inflammatory events at the leukocyte-endothelial interface. Via intravital microscopy, we observed that H2S donors (NaHS and Na2S) inhibited aspirin-induced leukocyte adherence in mesenteric venules (ED50 of 5.0 micromol/kg for Na2S), likely via activation of ATP-sensitive K+ (K(ATP)) channels. Inhibition of endogenous H2S synthesis elicited leukocyte adherence. Leukocyte infiltration in an air pouch model was also suppressed by H2S donors (NaHS, Lawesson's reagent, and N-acetylcysteine; ED50 of 42.7, 1.3, and 29.9 micromol/kg, respectively) and exacerbated by inhibition of endogenous H2S synthesis. Carrageenan-induced paw edema was suppressed by H2S donors (NaHS and Na2S; ED50s of 35 and 28 micromol/kg, respectively) to the same extent as by diclofenac and enhanced by an inhibitor of H2S synthesis. Suppression of edema formation by H2S donors was mimicked by a K(ATP) channel agonist and reversed by an antagonist of this channel. These results suggest that endogenous H2S is an important mediator of acute inflammation, acting at the leukocyte-endothelium interface. These findings have important implications for anti-inflammatory drug development.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd
                1582-1838
                1582-4934
                March 2013
                28 January 2013
                : 17
                : 3
                : 365-376
                Affiliations
                [a ]Pharmaceutical Science Research Division, King's College London London, England
                [b ]University of Exeter Medical School, St. Luke's Campus Exeter, Devon, England
                [c ]Department of Pharmacology, National University of Singapore Singapore, Singapore
                [d ]Centre for Cancer Research and Cell Biology, Queen's University Belfast Belfast, Northern Ireland, UK
                [e ]Synthetic Chemistry Facility, Department of Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, Devon, England
                Author notes
                *Correspondence to: Prof. Matt WHITEMAN, University of Exeter Medical School, St. Luke's Campus, Magdalen Road, Exeter, Devon, EX1 2LU, England. Prof. Philip K. MOORE, Department of Pharmacology, National University of Singapore, Singapore 117456, Singapore. Tel.: +44 (0) 13 92 72 29 42 Fax: +44 (0) 13 92 72 29 26 E-mails: m.whiteman@ 123456exeter.ac.uk ; dprmpk@ 123456nus.edu.sg
                [#]

                Authors contributed equally to this work.

                [†]

                Present address: p53Lab A*Star Immunos Singapore

                Article
                10.1111/jcmm.12016
                3823018
                23356870
                905cecbf-ec0c-48e2-9bf7-c0cd7f5affa5
                Copyright © 2013 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 13 June 2012
                : 04 December 2012
                Categories
                Original Articles

                Molecular medicine
                hydrogen sulfide,gyy4137,inflammation,synoviocyte,cytokines,myeloperoxidase,lipopolysaccharide,freund's adjuvant,cox-2,tnf-alpha converting enzyme

                Comments

                Comment on this article