8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration.

      The FASEB Journal
      Adenine, analogs & derivatives, pharmacology, Adenosine Triphosphate, metabolism, Animals, Biological Transport, Active, drug effects, Cells, Cultured, Dose-Response Relationship, Drug, Eye Proteins, antagonists & inhibitors, Humans, Hydrogen-Ion Concentration, Hydrolases, Lipofuscin, Lysosomes, Macular Degeneration, Phagocytosis, Pigment Epithelium of Eye, Proton Pump Inhibitors, Retinoids, Rod Cell Outer Segment, Swine

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipofuscin accumulation in the retinal pigment epithelium (RPE) is associated with various blinding retinal diseases, including age-related macular degeneration (AMD). The major lipofuscin fluorophor A2-E is thought to play an important pathogenetic role. In previous studies A2-E was shown to severely impair lysosomal function of RPE cells. However, the underlying molecular mechanism remained obscure. Using purified lysosomes from RPE cells we now demonstrate that A2-E is a potent inhibitor of the ATP-driven proton pump located in the lysosomal membrane. Such inhibition of proton transport to the lysosomal lumen results in an increase of the lysosomal pH with subsequent inhibition of lysosomal hydrolases. An essential task of the lysosomal apparatus of postmitotic RPE for normal photoreceptor function is phagocytosis and degradation of membranous discs shed from photoreceptor outer segments (POS) and of biomolecules from autophagy. When the lysosomes of cultured RPE cells were experimentally loaded with A2-E, we observed intracellular accumulation of exogenously added POS with subsequent congestion of the phagocytic process. Moreover, the autophagic sequestration of cytoplasmic material was also markedly reduced after A2-E loading. These data support the hypothesis that A2-E-induced lysosomal dysfunction contributes to the pathogenesis of AMD and other retinal diseases associated with excessive lipofuscin accumulation.

          Related collections

          Author and article information

          Comments

          Comment on this article