22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Breaking Object Correspondence Across Saccadic Eye Movements Deteriorates Object Recognition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Visual perception is based on information processing during periods of eye fixations that are interrupted by fast saccadic eye movements. The ability to sample and relate information on task-relevant objects across fixations implies that correspondence between presaccadic and postsaccadic objects is established. Postsaccadic object information usually updates and overwrites information on the corresponding presaccadic object. The presaccadic object representation is then lost. In contrast, the presaccadic object is conserved when object correspondence is broken. This helps transsaccadic memory but it may impose attentional costs on object recognition. Therefore, we investigated how breaking object correspondence across the saccade affects postsaccadic object recognition. In Experiment 1, object correspondence was broken by a brief postsaccadic blank screen. Observers made a saccade to a peripheral object which was displaced during the saccade. This object reappeared either immediately after the saccade or after the blank screen. Within the postsaccadic object, a letter was briefly presented (terminated by a mask). Observers reported displacement direction and letter identity in different blocks. Breaking object correspondence by blanking improved displacement identification but deteriorated postsaccadic letter recognition. In Experiment 2, object correspondence was broken by changing the object’s contrast-polarity. There were no object displacements and observers only reported letter identity. Again, breaking object correspondence deteriorated postsaccadic letter recognition. These findings identify transsaccadic object correspondence as a key determinant of object recognition across the saccade. This is in line with the recent hypothesis that breaking object correspondence results in separate representations of presaccadic and postsaccadic objects which then compete for limited attentional processing resources ( Schneider, 2013). Postsaccadic object recognition is then deteriorated because less resources are available for processing postsaccadic objects.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Guided Search 2.0 A revised model of visual search.

          An important component of routine visual behavior is the ability to find one item in a visual world filled with other, distracting items. This ability to performvisual search has been the subject of a large body of research in the past 15 years. This paper reviews the visual search literature and presents a model of human search behavior. Built upon the work of Neisser, Treisman, Julesz, and others, the model distinguishes between a preattentive, massively parallel stage that processes information about basic visual features (color, motion, various depth cues, etc.) across large portions of the visual field and a subsequent limited-capacity stage that performs other, more complex operations (e.g., face recognition, reading, object identification) over a limited portion of the visual field. The spatial deployment of the limited-capacity process is under attentional control. The heart of the guided search model is the idea that attentional deployment of limited resources isguided by the output of the earlier parallel processes. Guided Search 2.0 (GS2) is a revision of the model in which virtually all aspects of the model have been made more explicit and/or revised in light of new data. The paper is organized into four parts: Part 1 presents the model and the details of its computer simulation. Part 2 reviews the visual search literature on preattentive processing of basic features and shows how the GS2 simulation reproduces those results. Part 3 reviews the literature on the attentional deployment of limited-capacity processes in conjunction and serial searches and shows how the simulation handles those conditions. Finally, Part 4 deals with shortcomings of the model and unresolved issues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A theory of visual attention.

            A unified theory of visual recognition and attentional selection is developed by integrating the biased-choice model for single-stimulus recognition (Luce, 1963; Shepard, 1957) with a choice model for selection from multielement displays (Bundesen, Pedersen, & Larsen, 1984) in a race model framework. Mathematically, the theory is tractable, and it specifies the computations necessary for selection. The theory is applied to extant findings from a broad range of experimental paradigms. The findings include effects of object integrality in selective report, number and spatial position of targets in divided-attention paradigms, selection criterion and number of distracters in focused-attention paradigms, delay of selection cue in partial report, and consistent practice in search. On the whole, the quantitative fits are encouraging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salience, relevance, and firing: a priority map for target selection.

              The salience map is a crucial concept for many theories of visual attention. On this map, each object in the scene competes for selection - the more conspicuous the object, the greater its representation, and the more likely it will be chosen. In recent years, the firing patterns of single neurons have been interpreted using this framework. Here, we review evidence showing that the expression of salience is remarkably similar across structures, remarkably different across tasks, and modified in important ways when the salient object is consistent with the goals of the participant. These observations have important ramifications for theories of attention. We conclude that priority--the combined representation of salience and relevance--best describes the firing properties of neurons.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Syst Neurosci
                Front Syst Neurosci
                Front. Syst. Neurosci.
                Frontiers in Systems Neuroscience
                Frontiers Media S.A.
                1662-5137
                21 December 2015
                2015
                : 9
                : 176
                Affiliations
                [1] 1Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University Bielefeld, Germany
                [2] 2Cluster of Excellence Cognitive Interaction Technology, Bielefeld University Bielefeld, Germany
                Author notes

                Edited by: Marc Zirnsak, Stanford University, USA

                Reviewed by: Mazyar Fallah, York University, Canada; Alexander Christian Schütz, Philipps-Universität Marburg, Germany

                *Correspondence: Christian H. Poth, c.poth@ 123456uni-bielefeld.de
                Article
                10.3389/fnsys.2015.00176
                4685059
                26732235
                90e59d28-d31e-466a-883b-b32e12d3e10f
                Copyright © 2015 Poth, Herwig and Schneider.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 October 2015
                : 30 November 2015
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 54, Pages: 10, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                saccade,visual stability,attention,object correspondence,transsaccadic memory
                Neurosciences
                saccade, visual stability, attention, object correspondence, transsaccadic memory

                Comments

                Comment on this article