8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gold nanoshell coated NaYF4nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging

      , ,
      J. Mater. Chem.
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview.

            Macrophages are one of the principal immune effector cells that play essential roles as secretory, phagocytic, and antigen-presenting cells in the immune system. In this study, we address the issue of cytotoxicity and immunogenic effects of gold nanoparticles on RAW264.7 macrophage cells. The cytotoxicity of gold nanoparticles has been correlated with a detailed study of their endocytotic uptake using various microscopy tools such as atomic force microscopy (AFM), confocal-laser-scanning microscopy (CFLSM), and transmission electron microscopy (TEM). Our findings suggest that Au(0) nanoparticles are not cytotoxic, reduce the production of reactive oxygen and nitrite species, and do not elicit secretion of proinflammatory cytokines TNF-alpha and IL1-beta, making them suitable candidates for nanomedicine. AFM measurements suggest that gold nanoparticles are internalized inside the cell via a mechanism involving pinocytosis, while CFLSM and TEM studies indicate their internalization in lysosomal bodies arranged in perinuclear fashion. Our studies thus underline the noncytotoxic, nonimmunogenic, and biocompatible properties of gold nanoparticles with the potential for application in nanoimmunology, nanomedicine, and nanobiotechnology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Upconversion nanoparticles in biological labeling, imaging, and therapy.

              Upconversion refers to non-linear optical processes that convert two or more low-energy pump photons to a higher-energy output photon. After being recognized in the mid-1960s, upconversion has attracted significant research interest for its applications in optical devices such as infrared quantum counter detectors and compact solid-state lasers. Over the past decade, upconversion has become more prominent in biological sciences as the preparation of high-quality lanthanide-doped nanoparticles has become increasingly routine. Owing to their small physical dimensions and biocompatibility, upconversion nanoparticles can be easily coupled to proteins or other biological macromolecular systems and used in a variety of assay formats ranging from bio-detection to cancer therapy. In addition, intense visible emission from these nanoparticles under near-infrared excitation, which is less harmful to biological samples and has greater sample penetration depths than conventional ultraviolet excitation, enhances their prospects as luminescent stains in bio-imaging. In this article, we review recent developments in optical biolabeling and bio-imaging involving upconversion nanoparticles, simultaneously bringing to the forefront the desirable characteristics, strengths and weaknesses of these luminescent nanomaterials.
                Bookmark

                Author and article information

                Journal
                JMACEP
                J. Mater. Chem.
                J. Mater. Chem.
                Royal Society of Chemistry (RSC)
                0959-9428
                1364-5501
                2012
                2012
                : 22
                : 3
                : 960-965
                Article
                10.1039/C1JM14040J
                90e829a4-bee5-46db-8951-63c91ab51e2b
                © 2012
                History

                Comments

                Comment on this article