Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Depressed mitochondrial biogenesis and dynamic remodeling in mouse tibialis anterior and gastrocnemius induced by 4-week hindlimb unloading

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Impaired balance of mitochondrial fission and fusion in Alzheimer's disease.

          Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) neurons. In this study, we explored the involvement of an abnormal mitochondrial dynamics by investigating the changes in the expression of mitochondrial fission and fusion proteins in AD brain and the potential cause and consequence of these changes in neuronal cells. We found that mitochondria were redistributed away from axons in the pyramidal neurons of AD brain. Immunoblot analysis revealed that levels of DLP1 (also referred to as Drp1), OPA1, Mfn1, and Mfn2 were significantly reduced whereas levels of Fis1 were significantly increased in AD. Despite their differential effects on mitochondrial morphology, manipulations of these mitochondrial fission and fusion proteins in neuronal cells to mimic their expressional changes in AD caused a similar abnormal mitochondrial distribution pattern, such that mitochondrial density was reduced in the cell periphery of M17 cells or neuronal process of primary neurons and correlated with reduced spine density in the neurite. Interestingly, oligomeric amyloid-beta-derived diffusible ligands (ADDLs) caused mitochondrial fragmentation and reduced mitochondrial density in neuronal processes. More importantly, ADDL-induced synaptic change (i.e., loss of dendritic spine and postsynaptic density protein 95 puncta) correlated with abnormal mitochondrial distribution. DLP1 overexpression, likely through repopulation of neuronal processes with mitochondria, prevented ADDL-induced synaptic loss, suggesting that abnormal mitochondrial dynamics plays an important role in ADDL-induced synaptic abnormalities. Based on these findings, we suggest that an altered balance in mitochondrial fission and fusion is likely an important mechanism leading to mitochondrial and neuronal dysfunction in AD brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis.

            Adaptive thermogenesis is an important component of energy homeostasis and a metabolic defense against obesity. We have cloned a novel transcriptional coactivator of nuclear receptors, termed PGC-1, from a brown fat cDNA library. PGC-1 mRNA expression is dramatically elevated upon cold exposure of mice in both brown fat and skeletal muscle, key thermogenic tissues. PGC-1 greatly increases the transcriptional activity of PPARgamma and the thyroid hormone receptor on the uncoupling protein (UCP-1) promoter. Ectopic expression of PGC-1 in white adipose cells activates expression of UCP-1 and key mitochondrial enzymes of the respiratory chain, and increases the cellular content of mitochondrial DNA. These results indicate that PGC-1 plays a key role in linking nuclear receptors to the transcriptional program of adaptive thermogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes.

              Peroxisome proliferator-activated receptor alpha (PPARalpha) plays a key role in the transcriptional control of genes encoding mitochondrial fatty acid beta-oxidation (FAO) enzymes. In this study we sought to determine whether the recently identified PPAR gamma coactivator 1 (PGC-1) is capable of coactivating PPARalpha in the transcriptional control of genes encoding FAO enzymes. Mammalian cell cotransfection experiments demonstrated that PGC-1 enhanced PPARalpha-mediated transcriptional activation of reporter plasmids containing PPARalpha target elements. PGC-1 also enhanced the transactivation activity of a PPARalpha-Gal4 DNA binding domain fusion protein. Retroviral vector-mediated expression studies performed in 3T3-L1 cells demonstrated that PPARalpha and PGC-1 cooperatively induced the expression of PPARalpha target genes and increased cellular palmitate oxidation rates. Glutathione S-transferase "pulldown" studies revealed that in contrast to the previously reported ligand-independent interaction with PPARgamma, PGC-1 binds PPARalpha in a ligand-influenced manner. Protein-protein interaction studies and mammalian cell hybrid experiments demonstrated that the PGC-1-PPARalpha interaction involves an LXXLL domain in PGC-1 and the PPARalpha AF2 region, consistent with the observed ligand influence. Last, the PGC-1 transactivation domain was mapped to within the NH(2)-terminal 120 amino acids of the PGC-1 molecule, a region distinct from the PPARalpha interacting domains. These results identify PGC-1 as a coactivator of PPARalpha in the transcriptional control of mitochondrial FAO capacity, define separable PPARalpha interaction and transactivation domains within the PGC-1 molecule, and demonstrate that certain features of the PPARalpha-PGC-1 interaction are distinct from that of PPARgamma-PGC-1.
                Bookmark

                Author and article information

                Journal
                IUBMB Life
                IUBMB Life
                Wiley
                15216543
                November 2012
                November 2012
                September 29 2012
                : 64
                : 11
                : 901-910
                Article
                10.1002/iub.1087
                23024034
                90f2a58f-eb69-4e9a-af8e-18b67c8f2822
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article