9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Specificity and Application of the Lantibiotic Protease NisP

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lantibiotics are ribosomally produced and posttranslationally modified peptides containing several lanthionine residues. They exhibit substantial antimicrobial activity against Gram-positive bacteria, including relevant pathogens. The production of the model lantibiotic nisin minimally requires the expression of the modification and export machinery. The last step during nisin maturation is the cleavage of the leader peptide. This liberates the active compound and is catalyzed by the cell wall-anchored protease NisP. Here, we report the production and purification of a soluble variant of NisP. This has enabled us to study its specificity and test its suitability for biotechnological applications. The ability of soluble NisP to cleave leaders from various substrates was tested with two sets of nisin variants. The first set was designed to investigate the influence of amino acid variations in the leader peptide or variations around the cleavage site. The second set was designed to study the influence of the lanthionine ring topology on the proteolytic efficiency. We show that the substrate promiscuity is higher than has previously been suggested. Our results demonstrate the importance of the arginine residue at the end of the leader peptide and the importance of lanthionine rings in the substrate for specific cleavage. Collectively, these data indicate that NisP is a suitable protease for the activation of diverse heterologously expressed lantibiotics, which is required to release active antimicrobial compounds.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis.

          Lactococcus lactis is a Gram-positive lactic acid bacterium that, in addition to its traditional use in food fermentations, is increasingly used in modern biotechnological applications. In the last 25 years great progress has been made in the development of genetic engineering tools and the molecular characterization of this species. A new versatile and tightly controlled gene expression system, based on the auto-regulation mechanism of the bacteriocin nisin, was developed 10 years ago-the NIsin Controlled gene Expression system, called NICE. This system has become one of the most successful and widely used tools for regulated gene expression in Gram-positive bacteria. The review describes, after a brief introduction of the host bacterium L. lactis, the fundaments, components and function of the NICE system. Furthermore, an extensive overview is provided of the different applications in lactococci and other Gram-positive bacteria: (1) over-expression of homologous and heterologous genes for functional studies and to obtain large quantities of specific gene products, (2) metabolic engineering, (3) expression of prokaryotic and eukaryotic membrane proteins, (4) protein secretion and anchoring in the cell envelope, (5) expression of genes with toxic products and analysis of essential genes and (6) large-scale applications. Finally, an overview is given of growth and induction conditions for lab-scale and industrial-scale applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin.

            The kinetics, control, and efficiency of nisin-induced expression directed by the nisA promoter region were studied in Lactococcus lactis with transcriptional and translational fusions to the gusA reporter genes. In the nisin-producing L. lactis strain NZ9700, the specific beta-glucuronidase activity increased very rapidly after mid-exponential growth until the maximum level at the start of the stationary phase was reached. Expression of the gusA gene was also studied in L. lactis NZ9800, an NZ9700 derivative carrying a deletion in the structural nisA gene that abolishes nisin production, and in L. lactis NZ3900, an MG1363 derivative containing the regulatory nisRK genes integrated in the chromosome. In both strains, beta-glucuronidase activity was linearly dependent on the amount of nisin added to the medium. Without nisin, no beta-glucuronidase production was observed. To optimize translation initiation, an expression vector was constructed by fusing the gusA gene translationally to the start codon of the nisA gene. Use of the translational fusion vector yielded up to six times more beta-glucuronidase activity than the transcriptional fusion vector in these strains after induction by nisin. In this way, gene expression can be achieved in a dynamic range of more than 1,000-fold. The beta-glucuronidase activity was found to be up to 25-fold higher in extracts of strain NZ3900 than in extracts of strain NZ9800. This translational fusion vector was used for high-level production of aminopeptidase N, up to 47% of the total intracellular protein. These results clearly illustrate the potential of the nisin-inducible expression system for overproduction of desired proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Follow the leader: the use of leader peptides to guide natural product biosynthesis.

              The avalanche of genomic information in the past decade has revealed that natural product biosynthesis using the ribosomal machinery is much more widespread than originally anticipated. Nearly all of these compounds are crafted through post-translational modifications of a larger precursor peptide that often contains the marching orders for the biosynthetic enzymes. We review here the available information for how the peptide sequences in the precursors govern the post-translational tailoring processes for several classes of natural products. In addition, we highlight the great potential these leader peptide-directed biosynthetic systems offer for engineering conformationally restrained and pharmacophore-rich products with structural diversity that greatly expands the proteinogenic repertoire.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                09 February 2018
                2018
                : 9
                : 160
                Affiliations
                Department Molecular Genetics, University of Groningen , Groningen, Netherlands
                Author notes

                Edited by: Peter Neubauer, Technische Universität Berlin, Germany

                Reviewed by: Michael Gänzle, University of Alberta, Canada; Osmar Nascimento Silva, Universidade Católica Dom Bosco, Brazil

                *Correspondence: Oscar P. Kuipers o.p.kuipers@ 123456rug.nl

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                †Present Address: Manuel Montalbán-López, Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain

                ‡These authors have contributed equally to this work.

                Article
                10.3389/fmicb.2018.00160
                5812297
                29479343
                9124f21e-e8a1-4085-914b-a631dc558b57
                Copyright © 2018 Montalbán-López, Deng, van Heel and Kuipers.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 November 2017
                : 24 January 2018
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 58, Pages: 16, Words: 11482
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                lantibiotic,nisin,bacteriocin,lactococcus lactis,nisp,leader peptidase,subtilisin-like protease

                Comments

                Comment on this article