0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hyperglycemia-Induced Changes in ZIP7 and ZnT7 Expression Cause Zn(2+) Release From the Sarco(endo)plasmic Reticulum and Mediate ER Stress in the Heart.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Changes in cellular free Zn(2+) concentration, including those in the sarco(endo)plasmic reticulum [S(E)R], are primarily coordinated by Zn(2+) transporters (ZnTs) whose identity and role in the heart are not well established. We hypothesized that ZIP7 and ZnT7 transport Zn(2+) in opposing directions across the S(E)R membrane in cardiomyocytes and that changes in their activity play an important role in the development of ER stress during hyperglycemia. The subcellular S(E)R localization of ZIP7 and ZnT7 was determined in cardiomyocytes and in isolated S(E)R preparations. Markedly increased mRNA and protein levels of ZIP7 were observed in ventricular cardiomyocytes from diabetic rats or high-glucose-treated H9c2 cells while ZnT7 expression was low. In addition, we observed increased ZIP7 phosphorylation in response to high glucose in vivo and in vitro. By using recombinant-targeted Förster resonance energy transfer sensors, we show that hyperglycemia induces a marked redistribution of cellular free Zn(2+), increasing cytosolic free Zn(2+) and lowering free Zn(2+) in the S(E)R. These changes involve alterations in ZIP7 phosphorylation and were suppressed by small interfering RNA-mediated silencing of CK2α. Opposing changes in the expression of ZIP7 and ZnT7 were also observed in hyperglycemia. We conclude that subcellular free Zn(2+) redistribution in the hyperglycemic heart, resulting from altered ZIP7 and ZnT7 activity, contributes to cardiac dysfunction in diabetes.

          Related collections

          Author and article information

          Journal
          Diabetes
          Diabetes
          American Diabetes Association
          1939-327X
          0012-1797
          May 2017
          : 66
          : 5
          Affiliations
          [1 ] Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
          [2 ] Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K.
          [3 ] School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, U.K.
          [4 ] Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey belma.turan@medicine.ankara.edu.tr g.rutter@imperial.ac.uk.
          Article
          db16-1099
          10.2337/db16-1099
          28232492
          91407316-3d53-4040-87db-e60d69b99429
          History

          Comments

          Comment on this article