11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.

          Related collections

          Most cited references289

          • Record: found
          • Abstract: found
          • Article: not found

          A genome-wide association study identifies novel risk loci for type 2 diabetes.

          Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese.

            The mitochondrial uncoupling protein (UCP) in the mitochondrial inner membrane of mammalian brown adipose tissue generates heat by uncoupling oxidative phosphorylation. This process protects against cold and regulates energy balance. Manipulation of thermogenesis could be an effective strategy against obesity. Here we determine the role of UCP in the regulation of body mass by targeted inactivation of the gene encoding it. We find that UCP-deficient mice consume less oxygen after treatment with a beta3-adrenergic-receptor agonist and that they are sensitive to cold, indicating that their thermoregulation is defective. However, this deficiency caused neither hyperphagia nor obesity in mice fed on either a standard or a high-fat diet. We propose that the loss of UCP may be compensated by UCP2, a newly discovered homologue of UCP; this gene is ubiquitously expressed and is induced in the brown fat of UCP-deficient mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SLC transporters as therapeutic targets: emerging opportunities.

              Solute carrier (SLC) transporters - a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes - have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets.
                Bookmark

                Author and article information

                Journal
                Pharmacological Reviews
                Pharmacol Rev
                American Society for Pharmacology & Experimental Therapeutics (ASPET)
                0031-6997
                1521-0081
                December 27 2019
                January 2020
                December 27 2019
                January 2020
                : 72
                : 1
                : 343-379
                Article
                10.1124/pr.118.015735
                31882442
                60797112-433e-4e5c-a4d3-15c158928457
                © 2020
                History

                Comments

                Comment on this article