Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular genetic confirmatory testing from newborn screening samples for the common African-American, Asian Indian, Southeast Asian, and Chinese beta-thalassemia mutations.

      American Journal of Hematology
      African Continental Ancestry Group, genetics, Asian Continental Ancestry Group, Base Sequence, California, epidemiology, China, DNA Primers, European Continental Ancestry Group, Genetic Testing, Humans, India, Infant, Newborn, Neonatal Screening, Polymerase Chain Reaction, beta-Thalassemia

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          beta-Thalassemia is a serious health problem in the United States, especially in California, due to increased Asian immigration. Neonatal screening by using high-performance liquid chromatography (HPLC) or isoelectric focusing (IEF) may lead to confusion due to interactions of various hemoglobinopathies with beta-thalassemia. Our purpose was to develop single-tube multiplexed PCR assays using original neonatal screening specimens to identify the mutations responsible for beta-thalassemia in order to expedite diagnostic confirmation. Primers were designed for two to six common ethnic-specific mutations using the amplification refractory mutation system (ARMS). This multiplex ARMS approach was standardized using DNA samples with known mutations for beta-thalassemia in those of Asian (Southeast Asian, Chinese, and Asian Indian) and African-American descent. Specimens from African-American neonates were tested for two mutations (-88 and -29); Asian Indians for five mutations (IVSI-1, IVSI-5, codons (Cd) 41/42, Cd 8/9, and 619-bp deletion); Chinese, Taiwanese, and Southeast Asians for seven mutations (Cd 41/42, Cd 17, -28, IVSII-654, Cd 71/72, IVSI-5, and IVSI-1). We identified each of these beta-thalassemia mutations in multiplexed ARMS from positive control samples. We tested 25 anonymized dried blood specimens from neonates who had been diagnosed with beta-thalassemia and who also belonged to these ethnic groups. We detected a mutation specific to the neonate's ethnic group using the ARMS approach in nearly all specimens, and the results were confirmed by sequencing. Multiplexed ARMS for ethnic-specific beta-thalassemia mutations from the original newborn screening dried blood specimens is a rapid and efficient approach for diagnostic confirmation.

          Related collections

          Author and article information

          Comments

          Comment on this article