25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Listeria monocytogenes Traffics from Maternal Organs to the Placenta and Back

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infection with Listeria monocytogenes is a significant health problem during pregnancy. This study evaluates the role of trafficking between maternal organs and placenta in a pregnant guinea pig model of listeriosis. After intravenous inoculation of guinea pigs, the initial ratio of bacteria in maternal organs to placenta was 10 3–10 4:1. Rapid increase of bacteria in the placenta changed the ratio to 1:1 after 24 h. Utilizing two wild-type strains, differentially marked by their susceptibility to erythromycin, we found that only a single bacterium was necessary to cause placental infection, and that L. monocytogenes trafficked from maternal organs to the placenta in small numbers. Surprisingly, bacteria trafficked in large numbers from the placenta to maternal organs. Bacterial growth, clearance, and transport between organs were simulated with a mathematical model showing that the rate of bacterial clearance relative to the rate of bacterial replication in the placenta was sufficient to explain the difference in the course of listeriosis in pregnant versus nonpregnant animals. These results provide the basis for a new model where the placenta is relatively protected from infection. Once colonized, the placenta becomes a nidus of infection resulting in massive reseeding of maternal organs, where L. monocytogenes cannot be cleared until trafficking is interrupted by expulsion of the infected placental tissues.

          Synopsis

          Listeria monocytogenes is a bacterial pathogen that can cause invasive disease in predisposed individuals, including pregnant women and immunocompromised individuals. During pregnancy, listeriosis leads to spontaneous abortion, preterm labor, or neonatal disease. Tropism of L. monocytogenes to the placenta and maternal immunosuppression, have been hypothesized to be the cause of the susceptibility to listeriosis during pregnancy. This study presents a series of experiments in a pregnant guinea pig model of listeriosis and mathematical simulation of the infection, which led the authors to propose a new model. A single bacterium is sufficient to cause placental infection. Due to decreased clearance in the placenta there is a strong increase of bacteria in the placental compartment, which becomes a nidus of infection leading to continuous seeding of maternal organs. Thus, the increase of bacteria in maternal organs is not due to immunosuppression but to efflux of L. monocytogenes from the placenta. This process will be interrupted by expulsion of the infected feto-placental tissues. Therefore, spontaneous abortion and prematurity can be regarded as survival mechanisms for the mother. Furthermore, this study hypothesizes that expulsion of the infected placenta may be important for the natural history of listeriosis.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon?

          Pregnant females are susceptible to intracellular pathogens and are biased towards humoral rather than cell-mediated immunity. Since TH1 cytokines compromise pregnancy and TH2 cytokines are produced at the maternal-fetal interface, we hypothesize that these TH2 cytokines inhibit TH1 responses, improving fetal survival but impairing responses against some pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial invasion: the paradigms of enteroinvasive pathogens.

            Invasive bacteria actively induce their own uptake by phagocytosis in normally nonphagocytic cells and then either establish a protected niche within which they survive and replicate, or disseminate from cell to cell by means of an actin-based motility process. The mechanisms underlying bacterial entry, phagosome maturation, and dissemination reveal common strategies as well as unique tactics evolved by individual species to establish infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cell biology of Listeria monocytogenes infection

              Listeria monocytogenes has emerged as a remarkably tractable pathogen to dissect basic aspects of cell biology, intracellular pathogenesis, and innate and acquired immunity. In order to maintain its intracellular lifestyle, L. monocytogenes has evolved a number of mechanisms to exploit host processes to grow and spread cell to cell without damaging the host cell. The pore-forming protein listeriolysin O mediates escape from host vacuoles and utilizes multiple fail-safe mechanisms to avoid causing toxicity to infected cells. Once in the cytosol, the L. monocytogenes ActA protein recruits host cell Arp2/3 complexes and enabled/vasodilator-stimulated phosphoprotein family members to mediate efficient actin-based motility, thereby propelling the bacteria into neighboring cells. Alteration in any of these processes dramatically reduces the ability of the bacteria to establish a productive infection in vivo.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2006
                30 June 2006
                23 June 2006
                : 2
                : 6
                : e66
                Affiliations
                [1 ] Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
                [2 ] Department of Biochemistry, Stanford University Medical Center, Stanford, California, United States of America
                [3 ] Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
                [4 ] School of Public Health, University of California Berkeley, Berkeley, California, United States of America
                Tufts University School of Medicine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: annaib@ 123456berkeley.edu
                Article
                06-PLPA-RA-0053R2 plpa-02-06-15
                10.1371/journal.ppat.0020066
                1483233
                16846254
                914e8388-1196-40e5-8b98-9788b909a922
                Copyright: © 2006 Bakardjiev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 February 2006
                : 23 May 2006
                Page count
                Pages: 9
                Categories
                Research Article
                Infectious Diseases
                Microbiology
                Obstetrics - Gynecology
                Eubacteria
                Mammals
                Animals
                Custom metadata
                Bakardjiev AI, Theriot JA, Portnoy DA (2006) Listeria monocytogenes traffics from maternal organs to the placenta and back. PLoS Pathog 2(6): e66. DOI: 10.1371/journal.ppat.0020066

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article