5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Path-specific Underwater Acoustic Channel Tracking and its Application in Passive Time Reversal Mirror

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We consider the underwater acoustic channel which is time-variant and doubly-spread in this work. Since conventional channel estimation and decision feedback equalizer (DFE) can not work well for this type of channel, a path-specific underwater acoustic channel tracking is proposed. It is based on the framework of Kalman filter. We provide a simplified sound propagation model as the state transition model. A multipath tracker is proposed which is tolerant of the model-mismatch. Then we can obtain the time-variant path number and path-specific parameters such as delay and Doppler scaling factor. We also consider the application of the proposed path-specific underwater acoustic channel tracking. We propose two types of passive time reversal mirror (PTRM) with our path-specific parameters for time-variant and doubly-spread underwater acoustic channel. With the path-specific parameters obtained by the proposed channel tracking, the proposed PTRM can not only match the time dispersion as conventional PTRM, but also the doubly-spread channel, since the path-specific delay and Doppler scaler factor can help to match the channel in both time and frequency domain. For extensive doubly-spread channel, we can further apply the path-specific compensation to the PTRM. Both simulations and experimental results by data from 2016 Qiandao Lake experiment show the efficiency of proposed path-specific channel tracking and proposed PTRMs with path-specific parameters.

          Related collections

          Author and article information

          Journal
          01 March 2021
          Article
          2103.00874
          91561a14-7cc3-46f9-b589-4486bc62f066

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Submitted to IEEE Journal of Oceanic Engineering
          eess.SP stat.AP

          Applications,Electrical engineering
          Applications, Electrical engineering

          Comments

          Comment on this article