50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CC Chemokine Receptor 5: The Interface of Host Immunity and Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells.

          Evidence suggests that CD8+ T lymphocytes are involved in the control of human immunodeficiency virus (HIV) infection in vivo, either by cytolytic mechanisms or by the release of HIV-suppressive factors (HIV-SF). The chemokines RANTES, MIP-1 alpha, and MIP-1 beta were identified as the major HIV-SF produced by CD8+ T cells. Two active proteins purified from the culture supernatant of an immortalized CD8+ T cell clone revealed sequence identity with human RANTES and MIP-1 alpha. RANTES, MIP-1 alpha, and MIP-1 beta were released by both immortalized and primary CD8+ T cells. HIV-SF activity produced by these cells was completely blocked by a combination of neutralizing antibodies against RANTES, MIP-1 alpha, and MIP-1 beta. Recombinant human RANTES, MIP-1 alpha, and MIP-1 beta induced a dose-dependent inhibition of different strains of HIV-1, HIV-2, and simian immunodeficiency virus (SIV). These data may have relevance for the prevention and therapy of AIDS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural regulatory T cells in infectious disease.

            This review discusses the control exerted by natural CD4(+) CD25(+) regulatory T cells (natural T(reg) cells) during infectious processes. Natural T(reg) cells may limit the magnitude of effector responses, which may result in failure to adequately control infection. However, natural T(reg) cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses. We describe here various situations in which the balance between natural T(reg) cells and effector immune functions influences the outcome of infection and discuss how manipulating this equilibrium might be exploited therapeutically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flexible Programs of Chemokine Receptor Expression on Human Polarized T Helper 1 and 2 Lymphocytes

              Chemokines and their receptors are important elements for the selective attraction of various subsets of leukocytes. To better understand the selective migration of functional subsets of T cells, chemokine receptor expression was analyzed using monoclonal antibodies, RNase protection assays, and the response to distinct chemokines. Naive T cells expressed only CXC chemokine receptor (CXCR)4, whereas the majority of memory/activated T cells expressed CXCR3, and a small proportion expressed CC chemokine receptor (CCR)3 and CCR5. When polarized T cell lines were analyzed, CXCR3 was found to be expressed at high levels on T helper cell (Th)0s and Th1s and at low levels on Th2s. In contrast, CCR3 and CCR4 were found on Th2s. This was confirmed by functional responses: only Th2s responded with an increase in [Ca2+]i to the CCR3 and CCR4 agonists eotaxin and thymus and activation regulated chemokine (TARC), whereas only Th0s and Th1s responded to low concentrations of the CXCR3 agonists IFN-γ–inducible protein 10 (IP-10) and monokine induced by IFN-γ (Mig). Although CCR5 was expressed on both Th1 and Th2 lines, it was absent in several Th2 clones and its expression was markedly influenced by interleukin 2. Chemokine receptor expression and association with Th1 and Th2 phenotypes was affected by other cytokines present during polarization. Transforming growth factor β inhibited CCR3, but enhanced CCR4 and CCR7 expression, whereas interferon α inhibited CCR3 but upregulated CXCR3 and CCR1. These results demonstrate that chemokine receptors are markers of naive and polarized T cell subsets and suggest that flexible programs of chemokine receptor gene expression may control tissue-specific migration of effector T cells.
                Bookmark

                Author and article information

                Journal
                Dis Markers
                Dis. Markers
                DM
                Disease Markers
                Hindawi Publishing Corporation
                0278-0240
                1875-8630
                2014
                19 January 2014
                : 2014
                : 126954
                Affiliations
                Laboratory of Polymorphism and Application Study of DNA, Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Celso Garcia Cid highway, Pr 445, Km 380, 86057-970 Londrina, PR, Brazil
                Author notes
                *Maria Angelica Ehara Watanabe: maewatuel@ 123456gmail.com

                Academic Editor: Dinesh Kumbhare

                Article
                10.1155/2014/126954
                3925608
                24591756
                91711520-593b-4602-bac2-09afd5c7e208
                Copyright © 2014 Carlos Eduardo Coral de Oliveira et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 June 2013
                : 30 October 2013
                Categories
                Review Article

                Comments

                Comment on this article