4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Adaptive Functional Divergence Among Triplicated α-Globin Genes in Rodents

      , , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The functional divergence of duplicated genes is thought to play an important role in the evolution of new developmental and physiological pathways, but the role of positive selection in driving this process remains controversial. The objective of this study was to test whether amino acid differences among triplicated alpha-globin paralogs of the Norway rat (Rattus norvegicus) and the deer mouse (Peromyscus maniculatus) are attributable to a relaxation of purifying selection or to a history of positive selection that has adapted the gene products to new or modified physiological tasks. In each rodent species, the two paralogs at the 5'-end of the alpha-globin gene cluster (HBA-T1 and HBA-T2) are evolving in concert and are therefore identical or nearly identical in sequence. However, in each case, the HBA-T1 and HBA-T2 paralogs are distinguished from the third paralog at the 3'-end of the gene cluster (HBA-T3) by multiple amino acid substitutions. An analysis of genomic sequence data from several rodent species revealed that the HBA-T3 genes of Rattus and Peromyscus originated via independent, lineage-specific duplication events. In the independently derived HBA-T3 genes of both species, a likelihood analysis based on a codon-substitution model revealed that accelerated rates of amino acid substitution are attributable to positive directional selection, not to a relaxation of purifying selection. As a result of functional divergence among the triplicated alpha-globin genes in Rattus and Peromyscus, the red blood cells of both rodent species contain a mixture of functionally distinct alpha-chain hemoglobin isoforms that are predicted to have different oxygen-binding affinities. In P. maniculatus, a species that is able to sustain physiological function under conditions of chronic hypoxia at high altitude, the coexpression of distinct hemoglobin isoforms with graded oxygen affinities is expected to broaden the permissible range of arterial oxygen tensions for pulmonary/tissue oxygen transport.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Evolution by gene duplication: an update

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Consed:A Graphical Tool for Sequence Finishing

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PipMaker--a web server for aligning two genomic DNA sequences.

              PipMaker (http://bio.cse.psu.edu) is a World-Wide Web site for comparing two long DNA sequences to identify conserved segments and for producing informative, high-resolution displays of the resulting alignments. One display is a percent identity plot (pip), which shows both the position in one sequence and the degree of similarity for each aligning segment between the two sequences in a compact and easily understandable form. Positions along the horizontal axis can be labeled with features such as exons of genes and repetitive elements, and colors can be used to clarify and enhance the display. The web site also provides a plot of the locations of those segments in both species (similar to a dot plot). PipMaker is appropriate for comparing genomic sequences from any two related species, although the types of information that can be inferred (e.g., protein-coding regions and cis-regulatory elements) depend on the level of conservation and the time and divergence rate since the separation of the species. Gene regulatory elements are often detectable as similar, noncoding sequences in species that diverged as much as 100-300 million years ago, such as humans and mice, Caenorhabditis elegans and C. briggsae, or Escherichia coli and Salmonella spp. PipMaker supports analysis of unfinished or "working draft" sequences by permitting one of the two sequences to be in unoriented and unordered contigs.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                April 01 2008
                March 2008
                March 2008
                February 03 2008
                : 178
                : 3
                : 1623-1638
                Article
                10.1534/genetics.107.080903
                2278084
                18245844
                919a27bd-1d62-40b0-af6a-b84de69e05e8
                © 2008
                History

                Comments

                Comment on this article