1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Social influence on the effectiveness of virtual fencing in sheep

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early virtual fencing trials have effectively contained small groups of sheep within set areas of a paddock when all animals were wearing manual electronic collars. With sheep farming commonly involving large flocks, a potential cost-effective application of virtual fencing would involve applying equipment to only a proportion of the flock. In this study, we tested the ability of virtual fencing to control a small flock of sheep with differing proportions of the group exposed to the virtual fence (VF). Thirty-six Merino sheep were identified as leaders, middle or followers by moving them through a laneway. The sheep were then allocated to groups balanced for order of movement. The groups ( n = 9 per group) included applying the VF to the following proportions of animals within each group: (1) 100% ( n = 9 VF) (2) 66% ( n = 6 VF; n = 3 no VF) (3) 33% ( n = 3 VF; n = 6 no VF) (4) 0% (no VF; free to roam the paddock). The groups were given access to their own paddock (80 × 20 m) for two consecutive days, six hours per day, with the VF groups prevented from entering an exclusion zone that covered 50% of the north side of the paddock. During these hours, VF interactions, behavioural time budgets, and body temperature were recorded as measures of stress, and location was tracked with GPS. Group 100% VF and Control were tested on the first two days and groups 33% VF and 66% VF were tested on the following two days. During VF implementation the 100% VF and 66% VF group were successfully prevented from entering the exclusion zone. Having only 33% of the flock exposed to the virtual fence was not successful, with the sheep pushing forward through the VF to join flock mates in the exclusion zone. For learning to respond to the audio cue, sheep in the 33% group received more electrical stimuli with a 0.51 proportion for the ratio of electrical stimuli to audio cue, compared to 0.22 and 0.28 for the 100% and 66% groups, respectively. There were small differences in behavioural patterns of standing and lying on both days of testing, with the 100% VF and 66% VF groups spending more time lying. Although stress-induced hyperthermia did not occur in any of the VF groups, body temperature differed in the 33% VF group. There were no differences in temperature measures between the control and 100% VF animals. This study demonstrates that for a short period, controlling two-thirds of the flock was equally as effective as virtually fencing all animals, while controlling one-third of a flock with a virtual fence was not effective. For the short term, it appears that implementing the VF to a proportion of the flock can be an effective method of containment. Due to the limitations of this study, these results warrant further testing with larger flocks and for longer periods.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Framework to Assess the Impact of New Animal Management Technologies on Welfare: A Case Study of Virtual Fencing

          To be ethically acceptable, new husbandry technologies and livestock management systems must maintain or improve animal welfare. To achieve this goal, the design and implementation of new technologies need to harness and complement the learning abilities of animals. Here, from literature on the cognitive activation theory of stress (CATS), we develop a framework to assess welfare outcomes in terms of the animal's affective state and its learned ability to predict and control engagement with the environment, including, for example, new technologies. In CATS, animals' perception of their situation occurs through cognitive evaluation of predictability and controllability (P/C) that influence learning and stress responses. Stress responses result when animals are not able to predict or control both positive and negative events. A case study of virtual fencing involving avoidance learning is described. Successful learning occurs when the animal perceives cues to be predictable (audio warning always precedes a shock) and controllable (operant response to the audio cue prevents receiving the shock) and an acceptable welfare outcome ensues. However, if animals are unable to learn the association between the audio and shock cues, the situation retains low P/C leading to states of helplessness or hopelessness, with serious implications for animal welfare. We propose a framework for determining welfare outcomes and highlight examples of how animals' cognitive evaluation of their environment and their ability to learn relates to stress responses. New technologies or systems should ensure that predictability and controllability are not at low levels and that operant tasks align with learning abilities to provide optimal animal welfare outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Virtual Fencing Is Comparable to Electric Tape Fencing for Cattle Behavior and Welfare

            Virtual fencing technology restricts animal movement via communicated signals without physical boundaries. Specifically, the eShepherd™ automated virtual fencing system operates via GPS technology and provides stimuli via a neckband device. An audio warning tone is emitted at the virtual boundary which is followed by an electrical pulse if the animal continues moving forward. Animal welfare is a priority consideration for the commercial implementation of virtual fencing systems. The current study assessed the effects of a virtual fence, in comparison to an electric tape fence, to contain eight groups of eight 12–14 month old steers within a 6-ha area across eight separate paddocks for 4 weeks following 1 week acclimation to the paddocks. Cattle were assessed across two cohorts (four groups/cohort) from January until March 2019 in Australia. Body weight and fecal samples from each animal were taken weekly. Fecal samples were processed for fecal cortisol metabolite (FCM) concentrations. IceQube R®'s fitted to the leg measured individual lying and standing time and the virtual fencing neckbands recorded GPS location and all administered audio and electrical stimuli. Cattle were maintained within their allocated area by both fence types across the 4-week period and those with the virtual fences were responding correctly to the audio cue with an average of 71.51 ± 2.26% of all cues across all animals being audio only. There was individual variation in rate of learning. The electric tape groups in cohort 1 showed a greater increase in body weight over 4 weeks than the virtual fence groups (P < 0.001) but this difference was not confirmed in cohort 2. The fence type statistically influenced the total daily lying time (P = 0.02) with less lying in cattle from the virtual fence groups but this difference equated to an average of <20 min per day. There were no differences between fence types in FCM concentrations (P = 0.39) and the concentrations decreased across time for all cattle (P < 0.001). These results indicate that virtual fencing technology effectively contains animals in a prescribed area across 4 weeks without substantial behavioral and welfare impacts on the cattle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Tech-Savvy Beef Cattle? How Heifers Respond to Moving Virtual Fence Lines

              Simple Summary Physical fences are not always possible, thus automated technology called “virtual fencing” provides a potential solution. Virtual fencing uses Global Positioning System (GPS) technology and animals wear collar devices. As animals approach the virtual fence line, the collar emits an audio tone; if the animals walk further forward, they receive an electrical stimulus. If the animal turns around after the audio tone, they receive no electrical stimulus. However, no studies to date have looked at how animals respond when virtual fences have moved to different paddock locations. Virtual boundaries were set up to restrict six beef cattle wearing collars to different paddock areas. Within a few days, the animals were able to avoid the electrical stimulus by learning to turn away from the fence when they heard the audio tone. Over several weeks, the virtual fence was moved to three different locations within the paddock, and the animals rapidly learned it had moved, turning away at the audio tone the majority of the time. This shows that animals can learn the different collar signals and avoid moving virtual boundaries via the audio tone. The application of virtual fencing to farms enables improved animal management and animal exclusion from environmentally sensitive areas. Abstract Global Positioning System (GPS)-based virtual fences offer the potential to improve the management of grazing animals. Prototype collar devices utilising patented virtual fencing algorithms were placed on six Angus heifers in a 6.15 hectare paddock. After a “no fence” period, sequential, shifting virtual fences restricted the animals to 40%, 60%, and 80% of the paddock area widthways and 50% lengthways across 22 days. Audio cues signaled the virtual boundary, and were paired with electrical stimuli if the animals continued forward into the boundary. Within approximately 48 h, the cattle learned the 40% fence and were henceforth restricted to the subsequent inclusion zones a minimum of 96.70% (±standard error 0.01%) of the time. Over time, the animals increasingly stayed within the inclusion zones using audio cues alone, and on average, approached the new fence within 4.25 h. The animals were thus attentive to the audio cue, not the fence location. The time spent standing and lying and the number of steps were similar between inclusion zones (all p ≥ 0.42). More lying bouts occurred at the 80% and lengthways inclusion zones relative to “no fence” (p = 0.04). Further research should test different cattle groups in variable paddock settings and measure physiological welfare responses to the virtual fencing stimuli.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                30 September 2020
                2020
                : 8
                : e10066
                Affiliations
                [1 ]School of Environmental and Rural Science, University of New England , Armidale, New South Wales, Australia
                [2 ]Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation , Armidale, New South Wales, Australia
                [3 ]Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation , Adelaide, South Australia, Australia
                Article
                10066
                10.7717/peerj.10066
                7532778
                33062448
                91d01875-b2eb-4ebf-bb0d-090a19c441a9
                ©2020 Marini et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 7 May 2020
                : 8 September 2020
                Funding
                Funded by: The Australian Government Department of Agriculture, Water and the Environment and CSIRO
                This project is supported by funding from the Australian Government Department of Agriculture, Water and the Environment and CSIRO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Agricultural Science
                Animal Behavior
                Zoology

                virtual fencing,sheep welfare,sheep management,sheep behaviour

                Comments

                Comment on this article