0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Artificial intelligence CT screening model for thyroid-associated ophthalmopathy and tests under clinical conditions

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Deep Residual Learning for Image Recognition

            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Learning Deep Features for Discriminative Localization

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes

              Question How does a deep learning system (DLS) using artificial intelligence compare with professional human graders in identifying diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes? Findings In the primary validation dataset (71 896 images; 14 880 patients), the DLS had a sensitivity of 90.5% and specificity of 91.6% for detecting referable diabetic retinopathy; 100% sensitivity and 91.1% specificity for vision-threatening diabetic retinopathy; 96.4% sensitivity and 87.2% specificity for possible glaucoma; and 93.2% sensitivity and 88.7% specificity for age-related macular degeneration, compared with professional graders. Meaning The DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Importance A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases. Objective To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes. Design, Setting, and Participants Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes. Exposures Use of a deep learning system. Main Outcomes and Measures Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard. Results In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images). Conclusions and Relevance In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes. This diagnostic accuracy study compares the performance of deep learning systems vs eye professionals for detecting referable and vision-threatening diabetic retinopathy, glaucoma, and other eye diseases in retinal images from Chinese, Indian, and Malaysian patients.
                Bookmark

                Author and article information

                Contributors
                Journal
                International Journal of Computer Assisted Radiology and Surgery
                Int J CARS
                Springer Science and Business Media LLC
                1861-6410
                1861-6429
                February 2021
                November 04 2020
                February 2021
                : 16
                : 2
                : 323-330
                Article
                10.1007/s11548-020-02281-1
                33146848
                91ee2279-4d5f-4c82-963c-e745e2d1a188
                © 2021

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article