24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Artificial intelligence and machine learning in ocular oncology: Retinoblastoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose:

          This study was done to explore the utility of artificial intelligence (AI) and machine learning in the diagnosis and grouping of intraocular retinoblastoma (iRB).

          Methods:

          It was a retrospective observational study using AI and Machine learning, Computer Vision (OpenCV).

          Results:

          Of 771 fundus images of 109 eyes, 181 images had no tumor and 590 images displayed iRB based on review by two independent ocular oncologists (with an interobserver variability of <1%). The sensitivity, specificity, positive predictive value, and negative predictive value of the trained AI model were 85%, 99%, 99.6%, and 67%, respectively. Of 109 eyes, the sensitivity, specificity, positive predictive value, and negative predictive value for detection of RB by AI model were 96%, 94%, 97%, and 91%, respectively. Of these, the eyes were normal (n = 31) or belonged to groupA (n=1), B (n=22), C (n=8), D (n=23),and E (n=24) RB based on review by two independent ocular oncologists (with an interobserver variability of 0%). The sensitivity, specificity, positive predictive value, and negative predictive value of the trained AI model were 100%, 100%, 100%, and 100% for group A; 82%, 20 21 98%, 90%, and 96% for group B; 63%, 99%, 83%, and 97% for group C; 78%, 98%, 90%, and 94% for group D, and 92%, 91%, 73%, and 98% for group E, respectively.

          Conclusion:

          Based on our study, we conclude that the AI model for iRB is highly sensitive in the detection of RB with high specificity for the classification of iRB.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

          Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes

            Question How does a deep learning system (DLS) using artificial intelligence compare with professional human graders in identifying diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes? Findings In the primary validation dataset (71 896 images; 14 880 patients), the DLS had a sensitivity of 90.5% and specificity of 91.6% for detecting referable diabetic retinopathy; 100% sensitivity and 91.1% specificity for vision-threatening diabetic retinopathy; 96.4% sensitivity and 87.2% specificity for possible glaucoma; and 93.2% sensitivity and 88.7% specificity for age-related macular degeneration, compared with professional graders. Meaning The DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Importance A deep learning system (DLS) is a machine learning technology with potential for screening diabetic retinopathy and related eye diseases. Objective To evaluate the performance of a DLS in detecting referable diabetic retinopathy, vision-threatening diabetic retinopathy, possible glaucoma, and age-related macular degeneration (AMD) in community and clinic-based multiethnic populations with diabetes. Design, Setting, and Participants Diagnostic performance of a DLS for diabetic retinopathy and related eye diseases was evaluated using 494 661 retinal images. A DLS was trained for detecting diabetic retinopathy (using 76 370 images), possible glaucoma (125 189 images), and AMD (72 610 images), and performance of DLS was evaluated for detecting diabetic retinopathy (using 112 648 images), possible glaucoma (71 896 images), and AMD (35 948 images). Training of the DLS was completed in May 2016, and validation of the DLS was completed in May 2017 for detection of referable diabetic retinopathy (moderate nonproliferative diabetic retinopathy or worse) and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse) using a primary validation data set in the Singapore National Diabetic Retinopathy Screening Program and 10 multiethnic cohorts with diabetes. Exposures Use of a deep learning system. Main Outcomes and Measures Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity of the DLS with professional graders (retinal specialists, general ophthalmologists, trained graders, or optometrists) as the reference standard. Results In the primary validation dataset (n = 14 880 patients; 71 896 images; mean [SD] age, 60.2 [2.2] years; 54.6% men), the prevalence of referable diabetic retinopathy was 3.0%; vision-threatening diabetic retinopathy, 0.6%; possible glaucoma, 0.1%; and AMD, 2.5%. The AUC of the DLS for referable diabetic retinopathy was 0.936 (95% CI, 0.925-0.943), sensitivity was 90.5% (95% CI, 87.3%-93.0%), and specificity was 91.6% (95% CI, 91.0%-92.2%). For vision-threatening diabetic retinopathy, AUC was 0.958 (95% CI, 0.956-0.961), sensitivity was 100% (95% CI, 94.1%-100.0%), and specificity was 91.1% (95% CI, 90.7%-91.4%). For possible glaucoma, AUC was 0.942 (95% CI, 0.929-0.954), sensitivity was 96.4% (95% CI, 81.7%-99.9%), and specificity was 87.2% (95% CI, 86.8%-87.5%). For AMD, AUC was 0.931 (95% CI, 0.928-0.935), sensitivity was 93.2% (95% CI, 91.1%-99.8%), and specificity was 88.7% (95% CI, 88.3%-89.0%). For referable diabetic retinopathy in the 10 additional datasets, AUC range was 0.889 to 0.983 (n = 40 752 images). Conclusions and Relevance In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases. Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes. This diagnostic accuracy study compares the performance of deep learning systems vs eye professionals for detecting referable and vision-threatening diabetic retinopathy, glaucoma, and other eye diseases in retinal images from Chinese, Indian, and Malaysian patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial intelligence in medicine.

              Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application.
                Bookmark

                Author and article information

                Journal
                Indian J Ophthalmol
                Indian J Ophthalmol
                IJO
                Indian J Ophthalmol
                Indian Journal of Ophthalmology
                Wolters Kluwer - Medknow (India )
                0301-4738
                1998-3689
                February 2023
                02 February 2023
                : 71
                : 2
                : 424-430
                Affiliations
                [1]Operation Eyesight Universal Institute for Eye Cancer (SK, VSV, NG, GP), L V Prasad Eye Institute, Hyderabad, Telangana, India
                [1 ]Artificial Intelligence and Machine Learning, TechSophy Inc, Hyderabad, Telangana, India
                Author notes
                Correspondence to: Dr. Swathi Kaliki, The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, Telangana - 500 034, India. E-mail: kalikiswathi@ 123456yahoo.com
                Article
                IJO-71-424
                10.4103/ijo.IJO_1393_22
                10228959
                36727332
                b9cbf47f-e486-4428-8718-26b0538081fa
                Copyright: © 2023 Indian Journal of Ophthalmology

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 09 June 2022
                : 27 September 2022
                : 24 November 2022
                Categories
                Original Article

                Ophthalmology & Optometry
                artificial intelligence,eye,machine learning,retinoblastoma,tumor
                Ophthalmology & Optometry
                artificial intelligence, eye, machine learning, retinoblastoma, tumor

                Comments

                Comment on this article