37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA Methylation in Cosmc Promoter Region and Aberrantly Glycosylated IgA1 Associated with Pediatric IgA Nephropathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IgA nephropathy (IgAN) is one of the most common glomerular diseases leading to end-stage renal failure. Elevation of aberrantly glycosylated IgA1 is a key feature of it. The expression of the specific molecular chaperone of core1ß1, 3galactosyl transferase ( Cosmc) is known to be reduced in IgAN. We aimed to investigate whether the methylation of CpG islands of Cosmc gene promoter region could act as a possible mechanism responsible for down-regulation of Cosmc and related higher secretion of aberrantly glycosylated IgA1in lymphocytes from children with IgA nephropathy. Three groups were included: IgAN children (n = 26), other renal diseases (n = 11) and healthy children (n = 13). B-lymphocytes were isolated and cultured, treated or not with IL-4 or 5-Aza-2’-deoxycytidine (AZA). The levels of DNA methylation of Cosmc promotor region were not significantly different between the lymphocytes of the three children populations ( P = 0.113), but there were significant differences between IgAN lymphocytes and lymphocytes of the other two children populations after IL-4 ( P<0.0001) or AZA ( P<0.0001). Cosmc mRNA expression was low in IgAN lymphocytes compared to the other two groups ( P<0.0001). The level of aberrantly glycosylated IgA1 was markedly higher in IgAN group compared to the other groups ( P<0.0001). After treatment with IL-4, the levels of Cosmc DNA methylation and aberrantly glycosylated IgA1 in IgAN lymphocytes were remarkably higher than the other two groups ( P<0.0001) with more markedly decreased Cosmc mRNA content ( P<0.0001). After treatment with AZA, the levels in IgAN lymphocytes were decreased, but was still remarkably higher than the other two groups ( P<0.0001), while Cosmc mRNA content in IgAN lymphocytes were more markedly increased than the other two groups ( P<0.0001). The alteration of DNA methylation by IL-4 or AZA specifically correlates in IgAN lymphocytes with alterations in Cosmc mRNA expression and with the level of aberrantly glycosylated IgA1 (r = −0.948, r = 0. 707). Our results suggested that hypermethylation of Cosmc promoter region could be a key mechanism for the reduction of Cosmc mRNA expression in IgAN lymphocytes with associated increase in aberrantly glycosylated IgA1.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Prognosis in IgA Nephropathy: 30-Year Analysis of 1,012 Patients at a Single Center in Japan

          Background Little is known about the long-term prognosis of patients with IgA nephropathy (IgAN). Methods This retrospective cohort analysis evaluated clinical and histological findings at the time of renal biopsy, initial treatment, patient outcomes over 30 years, and risk factors associated with progression in 1,012 patients diagnosed with IgAN at our center since 1974. Results Of the 1,012 patients, 40.5% were male. Mean patient age was 33±12 years and mean blood pressure was 122±17/75±13 mmHg. Mean serum creatinine concentration was 0.89±0.42 mg/dL, and mean estimated glomerular filtration rate (eGFR) was 78.5±26.2 ml/min/1.73 m2. Mean proteinuria was 1.19±1.61 g/day, and mean urinary red blood cells were 36.6±35.3/high-powered field. Histologically, mesangial hypercellularity was present in 47.6% of patients, endothelial hypercellularity in 44.3%, segmental sclerosis in 74.6%, and tubular atrophy/interstitial fibrosis in 28.8% by Oxford classification. Initial treatment consisted of corticosteroids in 26.9% of patients, renin-angiotensin-aldosterone system inhibitor in 28.9%, and tonsillectomy plus steroids in 11.7%. The 10-, 20-, and 30-year renal survival rates were 84.3, 66.6, and 50.3%, respectively. Tonsillectomy plus steroids dramatically improved renal outcome. Cox multivariate regression analysis showed that higher proteinuria, lower eGFR, and higher uric acid at the time of renal biopsy were independent risk factors for the development of end stage renal disease (ESRD). Conclusions IgAN is not a benign disease, with about 50% of patients progressing to ESRD within 30 years despite treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1.

            Aberrant glycosylation of IgA1 plays an essential role in the pathogenesis of IgA nephropathy. This abnormality is manifested by a deficiency of galactose in the hinge-region O-linked glycans of IgA1. Biosynthesis of these glycans occurs in a stepwise fashion beginning with the addition of N-acetylgalactosamine by the enzyme N-acetylgalactosaminyltransferase 2 and continuing with the addition of either galactose by beta1,3-galactosyltransferase or a terminal sialic acid by a N-acetylgalactosamine-specific alpha2,6-sialyltransferase. To identify the molecular basis for the aberrant IgA glycosylation, we established EBV-immortalized IgA1-producing cells from peripheral blood cells of patients with IgA nephropathy. The secreted IgA1 was mostly polymeric and had galactose-deficient O-linked glycans, characterized by a terminal or sialylated N-acetylgalactosamine. As controls, we showed that EBV-immortalized cells from patients with lupus nephritis and healthy individuals did not produce IgA with the defective galactosylation pattern. Analysis of the biosynthetic pathways in cloned EBV-immortalized cells from patients with IgA nephropathy indicated a decrease in beta1,3-galactosyltransferase activity and an increase in N-acetylgalactosamine-specific alpha2,6-sialyltransferase activity. Also, expression of beta1,3-galactosyltransferase was significantly lower, and that of N-acetylgalactosamine-specific alpha2,6-sialyltransferase was significantly higher than the expression of these genes in the control cells. Thus, our data suggest that premature sialylation likely contributes to the aberrant IgA1 glycosylation in IgA nephropathy and may represent a new therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy.

              Aberrant O-glycosylation in the hinge region of IgA1 characterizes IgA nephropathy. The mechanisms underlying this abnormal glycosylation are not well understood, but reduced expression of the enzyme core 1, β1,3-galactosyltransferase 1 (C1GALT1) may contribute. In this study, high-throughput microRNA (miRNA) profiling identified 37 miRNAs differentially expressed in PBMCs of patients with IgA nephropathy compared with healthy persons. Among them, we observed upregulation of miR-148b, which potentially targets C1GALT1. Patients with IgA nephropathy exhibited lower C1GALT1 expression, which negatively correlated with miR-148b expression. Transfection of PBMCs from healthy persons with a miR-148b mimic reduced endogenous C1GALT1 mRNA levels threefold. Conversely, loss of miR-148b function in PBMCs of patients with IgA nephropathy increased C1GALT1 mRNA and protein levels to those observed in healthy persons. Moreover, we found that upregulation of miR-148b directly correlated with levels of galactose-deficient IgA1. In vitro, we used an IgA1-producing cell line to confirm that miR-148b modulates IgA1 O-glycosylation and the levels of secreted galactose-deficient IgA1. Taken together, these data suggest a role for miRNAs in the pathogenesis of IgA nephropathy. Abnormal expression of miR-148b may explain the aberrant glycosylation of IgA1, providing a potential pharmacologic target for IgA nephropathy.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2015
                3 February 2015
                : 10
                : 2
                : e0112305
                Affiliations
                [1 ]Department of nephrology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
                [2 ]Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
                National Center for Scientific Research Demokritos, GREECE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: QS JQZ NZ XRL YS. Performed the experiments: QS JQZ. Analyzed the data: NZ. Contributed reagents/materials/analysis tools: XRL. Wrote the paper: QS YS.

                ‡ These authors contributed equally to this work.

                Article
                PONE-D-14-13950
                10.1371/journal.pone.0112305
                4315396
                25647400
                92028a9c-6a80-4bcb-b3ca-189708f70072
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 1 April 2014
                : 16 September 2014
                Page count
                Figures: 4, Tables: 1, Pages: 12
                Funding
                This work was supported by grants from the National Natural Science Foundation of China (No.81070565). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article