5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Ca 2+ on the promiscuous target-protein binding of calmodulin

      research-article
      , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Calmodulin (CaM) is a calcium sensing protein that regulates the function of a large number of proteins, thus playing a crucial part in many cell signaling pathways. CaM has the ability to bind more than 300 different target peptides in a Ca 2+-dependent manner, mainly through the exposure of hydrophobic residues. How CaM can bind a large number of targets while retaining some selectivity is a fascinating open question. Here, we explore the mechanism of CaM selective promiscuity for selected target proteins. Analyzing enhanced sampling molecular dynamics simulations of Ca 2+-bound and Ca 2+-free CaM via spectral clustering has allowed us to identify distinct conformational states, characterized by interhelical angles, secondary structure determinants and the solvent exposure of specific residues. We searched for indicators of conformational selection by mapping solvent exposure of residues in these conformational states to contacts in structures of CaM/target peptide complexes. We thereby identified CaM states involved in various binding classes arranged along a depth binding gradient. Binding Ca 2+ modifies the accessible hydrophobic surface of the two lobes and allows for deeper binding. Apo CaM indeed shows shallow binding involving predominantly polar and charged residues. Furthermore, binding to the C-terminal lobe of CaM appears selective and involves specific conformational states that can facilitate deep binding to target proteins, while binding to the N-terminal lobe appears to happen through a more flexible mechanism. Thus the long-ranged electrostatic interactions of the charged residues of the N-terminal lobe of CaM may initiate binding, while the short-ranged interactions of hydrophobic residues in the C-terminal lobe of CaM may account for selectivity. This work furthers our understanding of the mechanism of CaM binding and selectivity to different target proteins and paves the way towards a comprehensive model of CaM selectivity.

          Author summary

          Calmodulin is a protein involved in the regulation of a variety of cell signaling pathways. It acts by making usually calcium-insensitive proteins sensitive to changes in the calcium concentration inside the cell. Its two lobes bind calcium and allow the energetically unfavorable exposure of hydrophobic residues to the aqueous environment which can then bind target proteins. The mechanisms behind the simultaneous specificity and variation of target protein binding is yet unknown but will aid understanding of the calcium-signaling and regulation that occur in many of our cellular processes. Here, we used molecular dynamics simulations and data analysis techniques to investigate what effect calcium has on the binding modes of calmodulin. The simulations and analyses allow us to observe and differentiate specific states. One domain of calmodulin is shown to be selective with binding involving short-distance interactions between hydrophobic residues, while the other binds target proteins through a more flexible mechanism involving long-distance electrostatic interactions.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          CHARMM-GUI: a web-based graphical user interface for CHARMM.

          CHARMM is an academic research program used widely for macromolecular mechanics and dynamics with versatile analysis and manipulation tools of atomic coordinates and dynamics trajectories. CHARMM-GUI, http://www.charmm-gui.org, has been developed to provide a web-based graphical user interface to generate various input files and molecular systems to facilitate and standardize the usage of common and advanced simulation techniques in CHARMM. The web environment provides an ideal platform to build and validate a molecular model system in an interactive fashion such that, if a problem is found through visual inspection, one can go back to the previous setup and regenerate the whole system again. In this article, we describe the currently available functional modules of CHARMM-GUI Input Generator that form a basis for the advanced simulation techniques. Future directions of the CHARMM-GUI development project are also discussed briefly together with other features in the CHARMM-GUI website, such as Archive and Movie Gallery. 2008 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2).

            A small change in the Hamiltonian scaling in Replica Exchange with Solute Tempering (REST) is found to improve its sampling efficiency greatly, especially for the sampling of aqueous protein solutions in which there are large-scale solute conformation changes. Like the original REST (REST1), the new version (which we call REST2) also bypasses the poor scaling with system size of the standard Temperature Replica Exchange Method (TREM), reducing the number of replicas (parallel processes) from what must be used in TREM. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST2 is compared with TREM and with REST1 for the folding of the trpcage and β-hairpin in water. The comparisons confirm that REST2 greatly reduces the number of CPUs required by regular replica exchange and greatly increases the sampling efficiency over REST1. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Replica exchange with solute tempering: a method for sampling biological systems in explicit water.

              An innovative replica exchange (parallel tempering) method called replica exchange with solute tempering (REST) for the efficient sampling of aqueous protein solutions is presented here. The method bypasses the poor scaling with system size of standard replica exchange and thus reduces the number of replicas (parallel processes) that must be used. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST is compared with standard replica exchange for an alanine dipeptide molecule in water. The comparisons confirm that REST greatly reduces the number of CPUs required by regular replica exchange and increases the sampling efficiency. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                April 2018
                3 April 2018
                : 14
                : 4
                : e1006072
                Affiliations
                [001] Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
                National Cancer Institute, United States of America and Tel Aviv University, Israel, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-0828-3899
                Article
                PCOMPBIOL-D-17-02109
                10.1371/journal.pcbi.1006072
                5898786
                29614072
                92220905-6333-4a5a-b1b1-5f8e10097cf1
                © 2018 Westerlund, Delemotte

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 December 2017
                : 7 March 2018
                Page count
                Figures: 10, Tables: 5, Pages: 27
                Funding
                This study was funded by Sweden’s Strategic Research Areas (SFO in Swedish) strategic recruitment starting grant (LD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Physical Sciences
                Physics
                Thermodynamics
                Free Energy
                Biology and Life Sciences
                Molecular Biology
                Macromolecular Structure Analysis
                Protein Structure
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Physical Sciences
                Chemistry
                Computational Chemistry
                Molecular Dynamics
                Biology and Life Sciences
                Biochemistry
                Biochemical Simulations
                Biology and Life Sciences
                Computational Biology
                Biochemical Simulations
                Research and Analysis Methods
                Chemical Characterization
                Binding Analysis
                Biology and Life Sciences
                Cell Biology
                Molecular Motors
                Motor Proteins
                Actin Motors
                Myosins
                Biology and Life Sciences
                Biochemistry
                Proteins
                Motor Proteins
                Actin Motors
                Myosins
                Biology and Life Sciences
                Biochemistry
                Proteins
                Contractile Proteins
                Myosins
                Biology and Life Sciences
                Biochemistry
                Proteins
                Cytoskeletal Proteins
                Myosins
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Interactions
                Biology and Life Sciences
                Biophysics
                Ion Channels
                Physical Sciences
                Physics
                Biophysics
                Ion Channels
                Biology and Life Sciences
                Physiology
                Electrophysiology
                Ion Channels
                Medicine and Health Sciences
                Physiology
                Electrophysiology
                Ion Channels
                Biology and Life Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Ion Channels
                Medicine and Health Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Ion Channels
                Biology and Life Sciences
                Neuroscience
                Neurophysiology
                Ion Channels
                Biology and Life Sciences
                Biochemistry
                Proteins
                Ion Channels
                Custom metadata
                vor-update-to-uncorrected-proof
                2018-04-13
                All relevant data are within the paper and its Supporting Information files.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article