34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the increasing prevalence of drug-resistant bacterial infections and the slow healing of chronically infected wounds, the development of new antibacterial and accelerated wound healing dressings has become a serious challenge. In order to solve this problem, we developed photo-crosslinked multifunctional antibacterial adhesive anti-oxidant hemostatic hydrogel dressings based on polyethylene glycol monomethyl ether modified glycidyl methacrylate functionalized chitosan (CSG-PEG), methacrylamide dopamine (DMA) and zinc ion for disinfection of drug-resistant bacteria and promoting wound healing. The mechanical properties, rheological properties and morphology of hydrogels were characterized, and the biocompatibility of these hydrogels was studied through cell compatibility and blood compatibility tests. These hydrogels were tested for the in vitro blood-clotting ability of whole blood and showed good hemostatic ability in the mouse liver hemorrhage model and the mouse-tail amputation model. In addition, it has been confirmed that the multifunctional hydrogels have good inherent antibacterial properties against Methicillin-resistant Staphylococcus aureus (MRSA). In the full-thickness skin defect model infected with MRSA, the wound closure ratio, thickness of granulation tissue, number of collagen deposition, regeneration of blood vessels and hair follicles were measured. The inflammation-related cytokines (CD68) and angiogenesis-related cytokines (CD31) expressed during skin regeneration were studied. All results indicate that these multifunctional antibacterial adhesive hemostatic hydrogels have better healing effects than commercially available Tegaderm™ Film, revealing that they have become promising alternative in the healing of infected wounds.

          Graphical abstract

          Highlights

          • Antibacterial antioxidant adhesion hydrogel was obtained by photopolymerization.

          • These hydrogels exhibited good hemostatic property and cell compatibility.

          • The hydrogels showed good antibacterial property against MRSA.

          • The hydrogels significantly enhanced wound healing of infected skin wound.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism

          Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing

            Designing wound dressing materials with outstanding therapeutic effects, self-healing, adhesiveness and suitable mechanical property has great practical significance in healthcare, especially for joints skin wound healing. Here, we designed a kind of self-healing injectable micelle/hydrogel composites with multi-functions as wound dressing for joint skin damage. By combining the dynamic Schiff base and copolymer micelle cross-linking in one system, a series of hydrogels were prepared by mixing quaternized chitosan (QCS) and benzaldehyde-terminated Pluronic®F127 (PF127-CHO) under physiological conditions. The inherent antibacterial property, pH-dependent biodegradation and release behavior were investigated to confirm multi-functions of wound dressing. The hydrogel dressings showed suitable stretchable and compressive property, comparable modulus with human skin, good adhesiveness and fast self-healing ability to bear deformation. The hydrogels exhibited efficient hemostatic performance and biocompatibility. Moreover, the curcumin loaded hydrogel showed good antioxidant ability and pH responsive release profiles. In vivo experiments indicated that curcumin loaded hydrogels significantly accelerated wound healing rate with higher granulation tissue thickness and collagen disposition and upregulated vascular endothelial growth factor (VEGF) in a full-thickness skin defect model. Taken together, the antibacterial adhesive hydrogels with self-healing and good mechanical property offer significant promise as dressing materials for joints skin wound healing.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full‐Thickness Skin Regeneration During Wound Healing

                Bookmark

                Author and article information

                Contributors
                Journal
                Bioact Mater
                Bioact Mater
                Bioactive Materials
                KeAi Publishing
                2452-199X
                23 June 2021
                February 2022
                23 June 2021
                : 8
                : 341-354
                Affiliations
                [a ]Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
                [b ]Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
                [c ]Second Department of General Surgery, Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
                Author notes
                []Corresponding author. baoling@ 123456mail.xjtu.edu.cn
                [∗∗ ]Corresponding author. Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China. duanxianglong@ 123456nwpu.edu.cn
                Article
                S2452-199X(21)00300-5
                10.1016/j.bioactmat.2021.06.014
                8427086
                34541405
                923f4304-6ea0-4c99-aafa-b35fc9e46494
                © 2021 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 22 February 2021
                : 4 June 2021
                : 11 June 2021
                Categories
                Article

                chitosan,wound dressing,antibacterial,wound healing,hemostat,infected skin wound

                Comments

                Comment on this article