+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Defective Cortisol Secretion in Response to Spontaneous Hypoglycemia but Normal Cortisol Response to ACTH stimulation in neonates with Hyperinsulinemic Hypoglycemia (HH)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Hyperinsulinemic Hypoglycaemia (HH) is the most common cause of recurrent and persistent hypoglycemia in the neonatal period. Cortisol and GH play an important role as a counterregulatory hormone during hypoglycemia. Both antagonize the peripheral effects of insulin and directly influence glucose metabolism

          Patients and Methods:

          We studied cortisol and GH secretion in newborn infants with HH during spontaneous hypoglycemia. In addition, their basal ACTH level was measured and cortisol response to a standard dose ACTH test was performed.


          Nine newborns with HH were studied during the first 2 weeks of life. During HH, their mean glucose concentration was 1.42 ± 0.7 mmol/L, mean beta hydroxybutyrate level was 0.08 ± 0.04 mmol/L, and mean serum insulin level was 17.78 ± 9.7 μU/mL. Their cortisol and GH levels at the time of spontaneous hypoglycemia were 94.7 ± 83.1 nmol/L and 82.4 ± 29 m IU/L respectively. They had relatively low level of ACTH (range: 14 :72 pg/ml, mean: 39.4 ± 20 pg/mL) during hypoglycemia. All infants had GH concentration > 20 mIU/L at the time of hypoglycemia. All infants underwent ACTH test. Their basal serum cortisol levels did not differ compared to cortisol levels during hypoglycemia, and all had a normal peak cortisol response (> 500 nmol/L) in response to i.v. ACTH stimulation test.


          Infants with HH have low cortisol response to spontaneous hypoglycemia with normal response to exogenous standard-dose ACTH. Checking hypothalamic-pituitary axis (HPA) axis later in infancy using low dose ACTH may be useful to diagnose persistent HPA abnormalities in these infants. All HH infants had appropriate elevation of GH during hypoglycemia. (www.actabiomedica.it)

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: a multicenter trial.

          Infants developing bronchopulmonary dysplasia (BPD) show decreased cortisol response to adrenocorticotropic hormone. A pilot study of low-dose hydrocortisone therapy for prophylaxis of early adrenal insufficiency showed improved survival without BPD at 36 weeks' postmenstrual age, particularly in infants exposed to histologic chorioamnionitis. Mechanically ventilated infants with birth weights of 500 to 999 g were enrolled into this multicenter, randomized, masked trial between 12 and 48 hours of life. Patients received placebo or hydrocortisone, 1 mg/kg per day for 12 days, then 0.5 mg/kg per day for 3 days. BPD at 36 weeks' postmenstrual age was defined clinically (receiving supplemental oxygen) and physiologically (supplemental oxygen required for O2 saturation > or =90%). Patient enrollment was stopped at 360 patients because of an increase in spontaneous gastrointestinal perforation in the hydrocortisone-treated group. Survival without BPD was similar, defined clinically or physiologically, as were mortality, head circumference, and weight at 36 weeks. For patients exposed to histologic chorioamnionitis (n = 149), hydrocortisone treatment significantly decreased mortality and increased survival without BPD, defined clinically or physiologically. After treatment, cortisol values and response to adrenocorticotropic hormone were similar between groups. Hydrocortisone-treated infants receiving indomethacin had more gastrointestinal perforations than placebo-treated infants receiving indomethacin, suggesting an interactive effect. Prophylaxis of early adrenal insufficiency did not improve survival without BPD in the overall study population; however, treatment of chorioamnionitis-exposed infants significantly decreased mortality and improved survival without BPD. Low-dose hydrocortisone therapy did not suppress adrenal function or compromise short-term growth. The combination of indomethacin and hydrocortisone should be avoided.
            • Record: found
            • Abstract: found
            • Article: not found

            Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats.

            Overnutrition during critical developmental periods is suggested to be a risk factor for obesity and associated metabolic disorders in later life. Underlying mechanisms are unknown. Neuropeptides are essentially involved in the central nervous regulation of body weight. For instance, hypothalamic galanin (GAL) is a stimulator of food intake and body weight gain. To investigate long-term consequences of early postnatal overfeeding, the normal litter size of Wistar rats (n=10; controls) was reduced from day 3 to day 21 of life to only 3 pups per mother (small litters, SL; overnutrition). Throughout life, SL rats displayed hyperphagia (p<0.01), overweight (p<0.0001), hyperinsulinemia (p<0.01), impaired glucose tolerance (p<0.001), elevated triglycerides (p<0.001), and an increased systolic blood pressure (p<0.05). In adulthood, an increase of GAL-neurons in the arcuate hypothalamic nucleus (ARC) was found (p<0.001), positively correlated to body weight (p<0.001). A second experiment revealed hyperinsulinemia (p<0.001) and increased hypothalamic insulin levels (p<0.05) in SL rats during early postnatal life. Already on day 21 of life, i.e., at the end of the critical hypothalamic differentiation period, in SL rats the number of GAL-neurons was increased in the ARC (p<0.001), showing a positive correlation to body weight and insulin (p<0.05). In conclusion, neonatally acquired persisting malformation of hypothalamic galaninergic neurons, induced by early overfeeding and hyperinsulinism, might promote the development of overweight and syndrome X-like alterations during life. Copyright 1999 Elsevier Science B.V.
              • Record: found
              • Abstract: found
              • Article: not found

              Infants of diabetic mothers.

              Advances in the management of the mother with diabetes have reduced the rate of morbidity and mortality for her infant. Aggressive control of maternal glycemic status is warranted, because most morbidities are epidemiologically and pathophysiologically closely linked to fetal hyperglycemia and hyperinsulinemia. The burgeoning public health problem of overweight and obesity in children will likely result in an increased incidence of metabolic syndrome X, characterized by insulin resistance and type II diabetes in adulthood. An early manifestation of this may be glucose intolerance during pregnancy in overweight women without diabetes. Clinicians must continue to have a high degree of suspicion for the diagnosis of diabetes during gestation and screen offspring of women with gestational diabetes for neonatal sequelae.

                Author and article information

                Acta Biomed
                Acta Biomed
                Acta Bio Medica : Atenei Parmensis
                Mattioli 1885 (Italy )
                12 May 2021
                : 92
                : 2
                [1 ] Departments of Pediatrics, Hamad General Hospital, Doha, Qatar
                [2 ] Pediatric and Adolescent Outpatient Clinic, Quisisana Hospital, Ferrara, Italy
                [3 ] Departments of Neonatology, Hamad General Hospital, Doha, Qatar
                [4 ] Departments of Pharmacology, Hamad General Hospital, Doha, Qatar
                Author notes
                Correspondence: Vincenzo de Sanctis, MD Pediatric and Adolescent Outpatient Clinic Quisisana Hospital 44121 Ferrara, Italy E-mail: vdesanctis@ 123456libero.it

                This work is licensed under a Creative Commons Attribution 4.0 International License

                Original Article


                Comment on this article