3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Robustness of S-Transform Based Phase Velocity Estimation in Viscoelastic Phantoms and Renal Transplants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ultrasound shear wave elastography (SWE) methods are being used to differentiate healthy versus diseased tissue on the basis of their viscoelastic mechanical properties. Tissue viscoelasticity is often studied by analyzing shear wave phase velocity dispersion curves, which is the variation of phase velocity with frequency or wavelength. Recently, a unique approach using a generalized Stockwell transformation (GST-SFK) was proposed for the calculation of dispersion curves in viscoelastic media over expanded frequency band. In this work, the method’s robustness was evaluated on data from five custom-made viscoelastic tissue-mimicking phantoms and sixty in vivo renal transplants. For each phantom, 15 shear wave motion data acquisitions were taken, while 10–13 acquisitions were acquired for renal transplants measured in the renal cortex. For each data-set mean and standard deviation (SD) of estimated phase velocity dispersion curves were studied. In addition, the viscoelastic parameters of the Zener model were examined, which were preceded by a convergence analysis. For viscoelastic phantoms scanned with a research ultrasound scanner, and for the in vivo renal transplants scanned with a clinical scanner, the decisive advantage of the GST-SFK method over the standard two-dimensional Fourier transform (2D-FT) method was shown. The GST-SFK method provided dispersion curve estimates with lower SD over a wider frequency band in comparison to the 2D-FT method. These advantages are relevant to the analysis of the mechanical properties of tissues in clinical practice to discriminate healthy from diseased tissue.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The Banff 97 working classification of renal allograft pathology.

          Standardization of renal allograft biopsy interpretation is necessary to guide therapy and to establish an objective end point for clinical trials. This manuscript describes a classification, Banff 97, developed by investigators using the Banff Schema and the Collaborative Clinical Trials in Transplantation (CCTT) modification for diagnosis of renal allograft pathology. Banff 97 grew from an international consensus discussion begun at Banff and continued via the Internet. This schema developed from (a) analysis of data using the Banff classification, (b) publication of and experience with the CCTT modification, (c) international conferences, and (d) data from recent studies on impact of vasculitis on transplant outcome. Semiquantitative lesion scoring continues to focus on tubulitis and arteritis but includes a minimum threshold for interstitial inflammation. Banff 97 defines "types" of acute/active rejection. Type I is tubulointerstitial rejection without arteritis. Type II is vascular rejection with intimal arteritis, and type III is severe rejection with transmural arterial changes. Biopsies with only mild inflammation are graded as "borderline/suspicious for rejection." Chronic/sclerosing allograft changes are graded based on severity of tubular atrophy and interstitial fibrosis. Antibody-mediated rejection, hyperacute or accelerated acute in presentation, is also categorized, as are other significant allograft findings. The Banff 97 working classification refines earlier schemas and represents input from two classifications most widely used in clinical rejection trials and in clinical practice worldwide. Major changes include the following: rejection with vasculitis is separated from tubulointerstitial rejection; severe rejection requires transmural changes in arteries; "borderline" rejection can only be interpreted in a clinical context; antibody-mediated rejection is further defined, and lesion scoring focuses on most severely involved structures. Criteria for specimen adequacy have also been modified. Banff 97 represents a significant refinement of allograft assessment, developed via international consensus discussions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Banff 2015 Kidney Meeting Report: Current Challenges in Rejection Classification and Prospects for Adopting Molecular Pathology

            The XIII Banff meeting, held in conjunction the Canadian Society of Transplantation in Vancouver, Canada, reviewed the clinical impact of updates of C4d‐negative antibody‐mediated rejection (ABMR) from the 2013 meeting, reports from active Banff Working Groups, the relationships of donor‐specific antibody tests (anti‐HLA and non‐HLA) with transplant histopathology, and questions of molecular transplant diagnostics. The use of transcriptome gene sets, their resultant diagnostic classifiers, or common key genes to supplement the diagnosis and classification of rejection requires further consensus agreement and validation in biopsies. Newly introduced concepts include the i‐IFTA score, comprising inflammation within areas of fibrosis and atrophy and acceptance of transplant arteriolopathy within the descriptions of chronic active T cell–mediated rejection (TCMR) or chronic ABMR. The pattern of mixed TCMR and ABMR was increasingly recognized. This report also includes improved definitions of TCMR and ABMR in pancreas transplants with specification of vascular lesions and prospects for defining a vascularized composite allograft rejection classification. The goal of the Banff process is ongoing integration of advances in histologic, serologic, and molecular diagnostic techniques to produce a consensus‐based reporting system that offers precise composite scores, accurate routine diagnostics, and applicability to next‐generation clinical trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics.

              Shear wave elasticity imaging (SWEI) is a new approach to imaging and characterizing tissue structures based on the use of shear acoustic waves remotely induced by the radiation force of a focused ultrasonic beam. SWEI provides the physician with a virtual "finger" to probe the elasticity of the internal regions of the body. In SWEI, compared to other approaches in elasticity imaging, the induced strain in the tissue can be highly localized, because the remotely induced shear waves are attenuated fully within a very limited area of tissue in the vicinity of the focal point of a focused ultrasound beam. SWEI may add a new quality to conventional ultrasonic imaging or magnetic resonance imaging. Adding shear elasticity data ("palpation information") by superimposing color-coded elasticity data over ultrasonic or magnetic resonance images may enable better differentiation of tissues and further enhance diagnosis. This article presents a physical and mathematical basis of SWEI with some experimental results of pilot studies proving feasibility of this new ultrasonic technology. A theoretical model of shear oscillations in soft biological tissue remotely induced by the radiation force of focused ultrasound is described. Experimental studies based on optical and magnetic resonance imaging detection of these shear waves are presented. Recorded spatial and temporal profiles of propagating shear waves fully confirm the results of mathematical modeling. Finally, the safety of the SWEI method is discussed, and it is shown that typical ultrasonic exposure of SWEI is significantly below the threshold of damaging effects of focused ultrasound.
                Bookmark

                Author and article information

                Contributors
                Role: Member, IEEE
                Role: Member, IEEE
                Role: Senior Member, IEEE
                Journal
                0012737
                4157
                IEEE Trans Biomed Eng
                IEEE Trans Biomed Eng
                IEEE transactions on bio-medical engineering
                0018-9294
                1558-2531
                11 March 2024
                March 2024
                26 February 2024
                18 March 2024
                : 71
                : 3
                : 954-966
                Affiliations
                Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland
                Department of Radiology, Mayo Clinic, USA.
                Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, USA.
                Department of Radiology, Mayo Clinic, USA, and also with the Department of Physiology and Biomedical Engineering, Mayo Clinic, USA.
                Author notes
                Corresponding author: Piotr Kijanka. piotr.kijanka@ 123456agh.edu.pl
                Author information
                http://orcid.org/0000-0001-6086-3420
                http://orcid.org/0000-0003-0013-1759
                http://orcid.org/0000-0002-9718-4082
                http://orcid.org/0000-0003-1360-4287
                Article
                NIHMS1970319
                10.1109/TBME.2023.3323983
                10947612
                37824308
                926cc96c-0a68-4d65-89de-226b5abdb22d

                This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

                History
                Categories
                Article

                dispersion,acoustic radiation force (arf),in vivo,kelvin-voigt,kidney,phantom,shear wave elastography (swe),stockwell transform,ultrasound,viscoelasticity,zener

                Comments

                Comment on this article