2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Keck/NIRSPEC Studies of He i in the Atmospheres of Two Inflated Hot Gas Giants Orbiting K Dwarfs: WASP-52b and WASP-177b

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present the detection of neutral helium at 10833 Å in the atmosphere of WASP-52b and tentative evidence of helium in the atmosphere of the grazing WASP-177b, using high-resolution observations acquired with the NIRSPEC instrument on the Keck II telescope. We detect excess absorption by helium in WASP-52b’s atmosphere of 3.44% ± 0.31% (11 σ), or equivalently 66 ± 5 atmospheric scale heights. This absorption is centered on the planet’s rest frame (Δ v = 0.00 ± 1.19 km s −1). We model the planet’s escape using a 1D Parker wind model and calculate its mass-loss rate to be ∼1.4 × 10 11 g s −1, or equivalently 0.5% of its mass per gigayear. For WASP-177b, we see evidence for redshifted (Δ v = 6.02 ± 1.88 km s −1) helium-like absorption of 1.28% ± 0.29% (equal to 23 ± 5 atmospheric scale heights). However, due to residual systematics in the transmission spectrum of similar amplitude, we do not interpret this as significant evidence for He absorption in the planet’s atmosphere. Using a 1D Parker wind model, we set a 3 σ upper limit on WASP-177b’s escape rate of 7.9 × 10 10 g s −1. Our results, taken together with recent literature detections, suggest the tentative relation between XUV irradiation and He i absorption amplitude may be shallower than previously suggested. Our results highlight how metastable helium can advance our understanding of atmospheric loss and its role in shaping the exoplanet population.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SciPy 1.0: fundamental algorithms for scientific computing in Python

          SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Matplotlib: A 2D Graphics Environment

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Astropy: A community Python package for astronomy

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Astronomical Journal
                AJ
                American Astronomical Society
                0004-6256
                1538-3881
                June 29 2022
                July 01 2022
                June 29 2022
                July 01 2022
                : 164
                : 1
                : 24
                Article
                10.3847/1538-3881/ac722f
                92d3e57c-a39c-4bff-9523-97f06cb7fdf2
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article