+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Characterization of Ionotropic Glutamate Receptors in Rat Hypothalamus, Pituitary and Immortalized Gonadotropin-Releasing Hormone (GnRH) Neurons (GT1-7 Cells)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Evidence from various sources suggested that the Gonadotropin-Releasing Hormone (GnRH) neuron does not contain glutamate receptors. Northern analysis of the hypothalamus showed the presence of NMDAR1, GluR1, GluR4 and GluR6 mRNA, while the pituitary showed the presence of NMDAR1, GluR1 and GluR6 mRNA. Western blot analysis also showed the presence of NMDAR1 and GluR1 protein. Since there are relatively few GnRH neurons in the hypothalamus, and GT1-7 cells have been considered to be a GnRH neuronal cell line, GT1-7 cells were studied in detail. GT1-7 cells contained NMDAR1 mRNA levels as shown by Northern analysis but did not contain GluR1, GluR4, or GluR6 mRNA. They did not show the presence of NMDAR1 and GluR1 protein by Western analysis. In addition, GT1-7 cells showed no NMDA receptor binding using the competitive inhibitor CGP-39563 and the noncompetitive inhibitor MK-801. Likewise, no binding was detected for kainate receptors. However, a small amount of binding for AMPA receptors was found in GT1-7 cells. GT1-7 cells did not exhibit glutamate toxicity and NMDA failed to elicit inward currents using patch-clamp techniques, although GABA did induce currents in the cells. As a whole, these studies suggest that GT1-7 cells lack or possess only low levels of ionotropic glutamate receptors.

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular diversity of the NMDA receptor channel.

          Two novel subunits of the mouse NMDA receptor channel, the epsilon 2 and epsilon 3 subunits, have been identified by cloning and expression of complementary DNAs. The heteromeric epsilon 1/zeta 1, epsilon 2/zeta 1 and epsilon 3/zeta 1 NMDA receptor channels exhibit distinct functional properties in affinities for agonists and sensitivities to competitive antagonists and Mg2+ block. In contrast to the wide distribution of the epsilon 1 and zeta 1 subunit messenger RNAs in the brain, the epsilon 2 subunit mRNA is expressed only in the forebrain and the epsilon 3 subunit mRNA is found predominantly in the cerebellum. The epsilon 1/zeta 1 and epsilon 2/zeta 1 channels expressed in Xenopus oocytes, but not the epsilon 3/zeta 1 channel, are activated by treatment with 12-O-tetradecanoylphorbol 13-acetate. These findings suggest that the molecular diversity of the epsilon subunit family underlies the functional heterogeneity of the NMDA receptor channel.
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning by functional expression of a member of the glutamate receptor family.

            We have isolated a complementary DNA clone by screening a rat brain cDNA library for expression of kainate-gated ion channels in Xenopus oocytes. The cDNA encodes a single protein of relative molecular mass (Mr) 99,800 which on expression in oocytes forms a functional ion channel possessing the electrophysiological and pharmacological properties of the kainate subtype of the glutamate receptor family in the mammalian central nervous system.
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development.

              We have isolated cDNAs encoding a glutamate receptor subunit, designated GluR5, displaying 40%-41% amino acid identity with the kainate/AMPA receptor subunits GluR1, GluR2, GluR3, and GluR4. This level of sequence similarity is significantly below the approximately 70% intersubunit identity characteristic of kainate/AMPA receptors. The GluR5 protein forms homomeric ion channels in Xenopus oocytes that are weakly responsive to L-glutamate. The GluR5 gene is expressed in subsets of neurons throughout the developing and adult central and peripheral nervous systems. During embryogenesis, GluR5 transcripts are detected in areas of neuronal differentiation and synapse formation.

                Author and article information

                S. Karger AG
                June 1999
                14 June 1999
                : 69
                : 6
                : 397-407
                Departments of aPhysiology and Endocrinology, and bPharmacology and Toxicology, School of Medicine, Medical College of Georgia, Augusta, Ga., USA
                54442 Neuroendocrinology 1999;69:397–407
                © 1999 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 8, References: 67, Pages: 11
                Reproductive Hormones


                Comment on this article