60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell Death Control: The Interplay of Apoptosis and Autophagy in the Pathogenicity of Sclerotinia sclerotiorum

      research-article
      1 , 2 , 3 , 4 , 5 , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Programmed cell death is characterized by a cascade of tightly controlled events that culminate in the orchestrated death of the cell. In multicellular organisms autophagy and apoptosis are recognized as two principal means by which these genetically determined cell deaths occur. During plant-microbe interactions cell death programs can mediate both resistant and susceptible events. Via oxalic acid (OA), the necrotrophic phytopathogen Sclerotinia sclerotiorum hijacks host pathways and induces cell death in host plant tissue resulting in hallmark apoptotic features in a time and dose dependent manner. OA-deficient mutants are non-pathogenic and trigger a restricted cell death phenotype in the host that unexpectedly exhibits markers associated with the plant hypersensitive response including callose deposition and a pronounced oxidative burst, suggesting the plant can recognize and in this case respond, defensively. The details of this plant directed restrictive cell death associated with OA deficient mutants is the focus of this work. Using a combination of electron and fluorescence microscopy, chemical effectors and reverse genetics, we show that this restricted cell death is autophagic. Inhibition of autophagy rescued the non-pathogenic mutant phenotype. These findings indicate that autophagy is a defense response in this necrotrophic fungus/plant interaction and suggest a novel function associated with OA; namely, the suppression of autophagy. These data suggest that not all cell deaths are equivalent, and though programmed cell death occurs in both situations, the outcome is predicated on who is in control of the cell death machinery. Based on our data, we suggest that it is not cell death per se that dictates the outcome of certain plant-microbe interactions, but the manner by which cell death occurs that is crucial.

          Author Summary

          During plant-microbe interactions, regulated cell death known as programmed cell death (PCD) can mediate both resistant and susceptible interactions. Sclerotinia sclerotiorum induces an apoptotic spreading cell death during infection, via the secreted virulence determinant oxalic acid. Oxalic acid deficient fungal mutants are non-pathogenic, and trigger a restricted cell death phenotype in the host that unexpectedly exhibits markers associated with the plant hypersensitive response. Using electron and fluorescence microscopy, chemical effectors and reverse genetics, we show that this restricted cell death is autophagic. Inhibition of autophagy rescued the non-pathogenic mutant phenotype. These findings indicate that autophagy is a defense response in this interaction and suggest a novel function associated with oxalic acid: the suppression of autophagy. Thus, the control of cell death, dictated by the plant (autophagy) or the fungus (apoptosis), can lead to opposing outcomes. We propose that the type of cell death is decisive to the outcome of certain plant-microbe interactions.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy in cell death: an innocent convict?

          The visualization of autophagosomes in dying cells has led to the belief that autophagy is a nonapoptotic form of programmed cell death. This concept has now been evaluated using cells and organisms deficient in autophagy genes. Most evidence indicates that, at least in cells with intact apoptotic machinery, autophagy is primarily a pro-survival rather than a pro-death mechanism. This review summarizes the evidence linking autophagy to cell survival and cell death, the complex interplay between autophagy and apoptosis pathways, and the role of autophagy-dependent survival and death pathways in clinical diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic priming by a secreted fungal effector.

            Maize smut caused by the fungus Ustilago maydis is a widespread disease characterized by the development of large plant tumours. U. maydis is a biotrophic pathogen that requires living plant tissue for its development and establishes an intimate interaction zone between fungal hyphae and the plant plasma membrane. U. maydis actively suppresses plant defence responses by secreted protein effectors. Its effector repertoire comprises at least 386 genes mostly encoding proteins of unknown function and expressed exclusively during the biotrophic stage. The U. maydis secretome also contains about 150 proteins with probable roles in fungal nutrition, fungal cell wall modification and host penetration as well as proteins unlikely to act in the fungal-host interface like a chorismate mutase. Chorismate mutases are key enzymes of the shikimate pathway and catalyse the conversion of chorismate to prephenate, the precursor for tyrosine and phenylalanine synthesis. Root-knot nematodes inject a secreted chorismate mutase into plant cells likely to affect development. Here we show that the chorismate mutase Cmu1 secreted by U. maydis is a virulence factor. The enzyme is taken up by plant cells, can spread to neighbouring cells and changes the metabolic status of these cells through metabolic priming. Secreted chorismate mutases are found in many plant-associated microbes and might serve as general tools for host manipulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy regulates programmed cell death during the plant innate immune response.

              The plant innate immune response includes the hypersensitive response (HR), a form of programmed cell death (PCD). PCD must be restricted to infection sites to prevent the HR from playing a pathologic rather than protective role. Here we show that plant BECLIN 1, an ortholog of the yeast and mammalian autophagy gene ATG6/VPS30/beclin 1, functions to restrict HR PCD to infection sites. Initiation of HR PCD is normal in BECLIN 1-deficient plants, but remarkably, healthy uninfected tissue adjacent to HR lesions and leaves distal to the inoculated leaf undergo unrestricted PCD. In the HR PCD response, autophagy is induced in both pathogen-infected cells and distal uninfected cells; this is reduced in BECLIN 1-deficient plants. The restriction of HR PCD also requires orthologs of other autophagy-related genes including PI3K/VPS34, ATG3, and ATG7. Thus, the evolutionarily conserved autophagy pathway plays an essential role in plant innate immunity and negatively regulates PCD.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                April 2013
                April 2013
                11 April 2013
                : 9
                : 4
                : e1003287
                Affiliations
                [1 ]Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
                [2 ]Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
                [3 ]Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
                [4 ]Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
                [5 ]Center for Cell Death and Differentiation, Texas A&M University, College Station, Texas, United States of America
                Oregon State University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MK MBD. Performed the experiments: MK. Analyzed the data: MK BW MBD. Contributed reagents/materials/analysis tools: MBD. Wrote the paper: MK BW MBD.

                Article
                PPATHOGENS-D-12-02498
                10.1371/journal.ppat.1003287
                3623803
                23592997
                936bc401-5181-45c1-b2e8-6418e3302c5d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 October 2012
                : 19 February 2013
                Page count
                Pages: 12
                Funding
                This work was supported by NSF (MCB-092391) and BARD (US-4414-11C). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Microbial Control
                Mycology
                Pathogenesis
                Plant Microbiology
                Plant Science
                Plant Pathology
                Plant Pathogens

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article