1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent progress of graphene‐based materials for efficient charge transfer and device performance stability in perovskite solar cells

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.

          Two organolead halide perovskite nanocrystals, CH(3)NH(3)PbBr(3) and CH(3)NH(3)PbI(3), were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO(2) films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH(3)NH(3)PbI(3)-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH(3)NH(3)PbBr(3)-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photovoltaics. Interface engineering of highly efficient perovskite solar cells.

            Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels. Copyright © 2014, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%

              Perovskite solar cells (PSC) with efficiencies >20% have only been realized with highly expensive organic hole-transporting materials. We demonstrate PSCs achieving stabilized efficiencies exceeding 20% with CuSCN as hole extraction layer using fast solvent removal method to create compact, highly conformal CuSCN layers that facilitate fast carrier extraction and collection. The PSCs showed high thermal stability under long term heating, however, their operational stability was poor. This instability originates from potential induced degradation of the CuSCN/Au contact. The addition of a conductive reduced graphene oxide spacer layer between CuSCN and gold allowed PSCs to retain >95% of their initial efficiency after aging at a maximum power point for 1000 hours at 60 Celsius. Importantly, under both continuous full-sun illumination and thermal stress, CuSCN based devices surpassed the stability of spiro-OMeTAD based PSCs.
                Bookmark

                Author and article information

                Contributors
                Journal
                International Journal of Energy Research
                Int J Energy Res
                Wiley
                0363-907X
                1099-114X
                February 2021
                September 02 2020
                February 2021
                : 45
                : 2
                : 1347-1374
                Affiliations
                [1 ]Fakulti Kejuruteraan Pembuatan (Faculty of Manufacturing Engineering) Universiti Teknikal Malaysia Melaka Melaka Malaysia
                Article
                10.1002/er.5876
                936eb03f-c3ea-48bb-93e0-6f4446c62db8
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article