12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Source to Tap: Tracking Microbial Diversity in a Riverbank Filtration-Based Drinking Water Supply System under Changing Hydrological Regimes

      , , , , , ,
      Diversity
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In drinking water supply, riverbank filtration (RBF) is an efficient and cost-effective way of eliminating pathogens and micropollutants using a combination of biotic and abiotic processes. Microbial communities in the hyporheic zone both contribute to and are shaped by these processes. Microbial water quality at the point of consumption is in turn influenced by the source water microbiome, water treatment and distribution system. Understanding microbial community shifts from source to tap and the factors behind them is instrumental in maintaining safe drinking water delivery. To this end, microbial communities of an RBF-based drinking water supply system were investigated by metabarcoding in a one-year sampling campaign. Samples were collected from the river, RBF wells, treated water, and a consumer’s tap. Metabarcoding data were analysed in the context of physicochemical and hydrological parameters. Microbial diversity as well as cell count decreased consistently from the surface water to the tap. While Proteobacteria were dominant throughout the water supply system, typical river water microbiome phyla Bacteroidota, Actinobacteria, and Verrucomicrobiota were replaced by Nitrospira, Patescibacteria, Chloroflexi, Acidobacteriota, Methylomicrobilota, and the archaeal phylum Nanoarcheota in well water. Well water communities were differentiated by water chemistry, in wells with high concentration groundwater derived iron, manganese, and sulphate, taxa related to iron and sulphur biogeochemical cycle were predominant, while methane oxidisers characterised the more oxic wells. Chlorine-resistant and filtration-associated taxa (Acidobacteria, Firmicutes, and Bdellovibrionota) emerged after water treatment, and no potentially pathogenic taxa were identified at the point of consumption. River discharge had a distinct impact on well water microbiome indicative of vulnerability to climate change. Low flow conditions were characterised by anaerobic heterotrophic taxa (Woesarchaeales, Aenigmarchaeales, and uncultured bacterial phyla MBNT15 and WOR-1), implying reduced efficiency in the degradation of organic substances. High flow was associated the emergence of typical surface water taxa. Better understanding of microbial diversity in RBF water supply systems contributes to preserving drinking water safety in the future changing environment.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            VSEARCH: a versatile open source tool for metagenomics

            Background VSEARCH is an open source and free of charge multithreaded 64-bit tool for processing and preparing metagenomics, genomics and population genomics nucleotide sequence data. It is designed as an alternative to the widely used USEARCH tool (Edgar, 2010) for which the source code is not publicly available, algorithm details are only rudimentarily described, and only a memory-confined 32-bit version is freely available for academic use. Methods When searching nucleotide sequences, VSEARCH uses a fast heuristic based on words shared by the query and target sequences in order to quickly identify similar sequences, a similar strategy is probably used in USEARCH. VSEARCH then performs optimal global sequence alignment of the query against potential target sequences, using full dynamic programming instead of the seed-and-extend heuristic used by USEARCH. Pairwise alignments are computed in parallel using vectorisation and multiple threads. Results VSEARCH includes most commands for analysing nucleotide sequences available in USEARCH version 7 and several of those available in USEARCH version 8, including searching (exact or based on global alignment), clustering by similarity (using length pre-sorting, abundance pre-sorting or a user-defined order), chimera detection (reference-based or de novo), dereplication (full length or prefix), pairwise alignment, reverse complementation, sorting, and subsampling. VSEARCH also includes commands for FASTQ file processing, i.e., format detection, filtering, read quality statistics, and merging of paired reads. Furthermore, VSEARCH extends functionality with several new commands and improvements, including shuffling, rereplication, masking of low-complexity sequences with the well-known DUST algorithm, a choice among different similarity definitions, and FASTQ file format conversion. VSEARCH is here shown to be more accurate than USEARCH when performing searching, clustering, chimera detection and subsampling, while on a par with USEARCH for paired-ends read merging. VSEARCH is slower than USEARCH when performing clustering and chimera detection, but significantly faster when performing paired-end reads merging and dereplication. VSEARCH is available at https://github.com/torognes/vsearch under either the BSD 2-clause license or the GNU General Public License version 3.0. Discussion VSEARCH has been shown to be a fast, accurate and full-fledged alternative to USEARCH. A free and open-source versatile tool for sequence analysis is now available to the metagenomics community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing

              High-throughput sequencing has revolutionized microbial ecology, but read quality remains a significant barrier to accurate taxonomy assignment and alpha diversity assessment for microbial communities. We demonstrate that high-quality read length and abundance are the primary factors differentiating correct from erroneous reads produced by Illumina GAIIx, HiSeq, and MiSeq instruments. We present guidelines for user-defined quality-filtering strategies, enabling efficient extraction of high-quality data from, and facilitating interpretation of Illumina sequencing results.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                DIVEC6
                Diversity
                Diversity
                MDPI AG
                1424-2818
                May 2023
                May 02 2023
                : 15
                : 5
                : 621
                Article
                10.3390/d15050621
                93963d53-8780-4bba-bde4-cd4f8026aa98
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article